合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 大气治理技术

> 基于耦合机器学习和相关性分析的大气污染物溯源方法与流程

基于耦合机器学习和相关性分析的大气污染物溯源方法与流程

922   编辑:中冶有色网   来源:中节能天融科技有限公司  
2023-09-19 10:22:42
1.本发明涉及污染物溯源技术领域,特别是涉及一种基于耦合机器学习和相关性分析的大气污染物溯源方法。背景技术:2.随着我国经济快速发展、工业化和城镇化进程不断加速、能源消耗增加,出现了一系列的大气环境问题。相比于水体、土壤等环境中的污染物,大气污染物更具有易扩散、易混合、污染路径不清晰等的特性,会受到排放源、污染过程、气象条件等影响。其中,排放源是内因、气象条件是外因、污染过程是动因。由于动因和外因主要受到自然客观规律的影响,以至于人力难以控制,因此,控制内因则是大气污染防治、环境管理最有效的方法,其核心就是找准污染源头,厘清污染成因,实现靶向治理,提高控制效率。3.找准大气污染源头可分为两大类,一是污染溯源,侧重于时空分布上的排放源追溯;二是排放源解析,侧重于排放源成分和行业解析。大气精细化网格体系是环境空气质量精准治理及科学管控的主要手段,应用较为广泛。基于网格化的环境专业统计学数据分析可实现粗略的大气污染溯源,但响应时间较长。因此,研究者们采用基于模型软件、机器学习算法的大气污染溯源来提高响应时间,但是现有的方法在实现大气污染溯源时存在着不足,具体表现如下:(1)后向轨迹法:是一种用于计算和分析气流运动、沉降及扩散轨迹的综合模式系统,其核心是通过三维气象场中的风向、风速来计算和描述气团的运动,进而通过气团轨迹锁定污染源位置。但该方法对风场数据的依赖性较强,且受到多种气象要素输入场的局限,目前研究主要集中于短时间尺度的长距离输送和外来污染源的确定,在应对境外污染源、区域联防联控治理方面可提供理论借鉴,但在应对小尺度的区域内源污染溯源方面暂不适用。(2)概率方法:主要是针对大气污染物理化学过程的复杂性和数值模式的离散性而发展一种污染溯源方法,主要原理是将可用的浓度观测数据与先验信息相结合,基于大量历史数据分析和挖掘得到的后验参数的不确定性及置信区间。在应用时需要有大量的数据进行支撑,且需要已知污染源的先验信息,这在大气应急响应中是难以实现的。(3)颗粒物来源解析法:通过分析环境空气中的颗粒物和污染源样品的物理化学特性,定性识别污染源。同时,可结合数理统计、数值模式模拟定量计算污染源贡献率。但该方法着重解析的是排放源成分和行业,尚不能获得地理空间上的污染源锁定及源贡献率,因此,该方法难以满足大气污染精准溯源、难以实现大气污染靶向治理与高效管控的需求。4.现阶段根据模型
登录解锁全文
声明:
“基于耦合机器学习和相关性分析的大气污染物溯源方法与流程” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

2025第二届全国稀有金属特种材料技术交流会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记
手机号登陆