本申请公开了一种属性预测模型的训练方法、属性预测方法、装置及设备,涉及化学分子属性预测领域。该方法包括:获取第一组样本数据,第一组样本数据包括第一化学物质和第一化学物质的结构标签,结构标签用于描述化学物质中的原子结构;基于第一组样本数据训练得到预训练模型,预训练模型用于根据输入的化学物质输出化学物质的结构标签;获取第二组样本数据,第二组样本数据包括第二化学物质和第二化学物质的属性标签,属性标签用于描述化学物质的性质;基于第二组样本数据和预训练模型训练得到属性预测模型,属性预测模型用于根据输入的化学物质输出化学物质的属性标签。该方法可以减少训练属性预测模型所需的有标签数据量。
声明:
“属性预测模型的训练方法、属性预测方法、装置及设备” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)