本发明涉及一种基于相关性分析的EN结合MPA‑SVM的异常体征矿工判别方法,包括以下步骤:(1)收集矿工职业健康体检数据,构造矿工体征参数数据集合;(2)将矿工体征数据随机划分成训练集和预测集;(3)将训练集和预测集数据进行归一化处理;(4)采用皮尔逊相关系数分析并删除相关性较高的体征数据;(5)利用EN去除冗余体征信息;(6)建立MPA‑SVM矿工异常体征判别模型,预测集数据的评价指标用于模型性能的分析与评估。本发明将相关性分析的EN结合MPA‑SVM用于异常体征矿工的辨识,为矿工职业病和疑似职业病的检测做到前期精准筛查目的,适用于职业健康辅助诊断领域。
声明:
“基于相关性分析的EN结合MPA-SVM的异常体征矿工判别方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)