本发明公开了一种基于偏最小二乘的高斯回归软测量建模方法,该方法可用于存在较强的时变性、耦合性、非线性、滞后性以及其他复杂特性的工业过程。首先,基于偏最小二乘的方法对多元输入数据进行降维,并选取合适的得分向量作为高斯过程回归模型的输入;之后,通过对协方差函数的选取与组合,构建不同种类的高斯过程回归软测量模型对输出数据进行预测;最后,使用测试集数据对模型的预测能力进行评价。造纸废水处理过程数据的建模结果表明,基于偏最小二乘对被测变量的降维技术可以提高高斯过程回归模型的预测能力;由不同协方差函数构建的高斯过程回归模型为出水指标的预测提供了多种选择,更加适合复杂多变的造纸废水处理环境。
声明:
“基于偏最小二乘的高斯回归软测量建模方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)