本发明公开了一种基于ARMA和Elman神经网络联合建模的电池健康状态评估方法,该方法包括:基于自回归移动平均(ARMA)模型和Elman神经网络建立融合模型,应用经验模态分解对电池循环次数与剩余容量的实验数据进行处理,对分解得到的本征模态函数IMF分量和残余分量分别进行建模,最后叠加融合模型,生成估计的SOH序列,实现对电池健康状态的准确预测。通过实验验证,本发明考虑了复杂变化对电池健康状态的影响,完成了对钴酸锂的老化测试结果的预测,提高了评估的准确性。
声明:
“基于ARMA和Elman神经网络联合建模的电池健康状态评估方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)