本发明涉及一种基于神经网络进行电力负荷预测的方法,包括:搜集待处理年尺度数据与月尺度数据并进行相关性检验,确立年尺度数据,月尺度数据中的关键影响因素;分别关键影响因素及对应的年度电力最大负荷数据和对应的月度电力最大负荷数据,进行季节分解,得到相应的年数据趋势分量、年数据残差分量和年数据周期分量和相应的月数据趋势分量、月数据残差分量和月数据周期分量;然后分别进行协整检验和降维处理,得到LSTM模型的相应分量;将各分量输入LSTM模型中,得到个分量的预测分量;根据预测分量,采用LSTM循环神经网络的自学习能力将其进行拟合,得出电力负荷预测值。
声明:
“基于MSTL和LSTM模型的中长期电力负荷预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)