本发明涉及本发明公开了一种基于循环神经网络的锂离子电池SOC预测方法,属于电动汽车电池管理系统领域,本发明首先通过滑动窗口算法改进通过数次试验得到的电池外部参数数据以及此时对应的SOC值共同组成的数据集,然后通过改进的循环神经网络即长短时记忆网络方法建立
动力电池SOC估算模型,通过试验反复验证得到网络层函数以及梯度调整方法,最后通过设置不同的学习率验证模型的预测结果。本发明可以准确的预测下一时刻SOC值,并且预测精度高,训练时长较短,成本低,可广泛应用于电动汽车动力电池上的电池管理系统当中。
声明:
“基于循环神经网络的锂离子电池SOC预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)