本发明公开了一种基于机器学习的三元锂离子电池早期加速老化诊断方法,从三元锂离子电池放电容量‑电压曲线、放电IC曲线和放电DV曲线上提取表征三元锂离子电池的健康状态的17个老化特征参数,然后利用新的组合算法对三元锂离子电池的加速老化进行早期地准确诊断,首先通过随机森林选择重要特征,然后再通过线性相关分析降低重要特征线性相关性,最后通过逻辑回归模型判断加速老化,实现三元锂离子电池的加速老化早期准确诊断,从而在早期判断三元锂离子电池是否会发生加速老化,为锂离子电池的健康状态管理与健康状态评估提供重要的信息。
声明:
“基于机器学习的三元锂离子电池早期加速老化诊断方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)