本发明属于锂离子电池健康管理技术领域,涉及一种多尺度锂离子电池健康状态的预测方法。主要解决
锂电池健康状态预测精度差的问题。本发明提取了锂离子电池放电阶段的温度变化特征,利用小波分解对温度变化特征和容量退化数据进行时、频域上的对比分析,确定了温度变化斜率在容量退化过程中发挥主要作用的频段范围。同时,利用集成学习预测思想构建了基于小波神经网络的多尺度预测模型。该预测模型将小波分解后的数据分类,并使用Bootstraping抽样法将低频容量退化数据集、中频温度变化特征和剩余部分抽样,使得每种特征划分为四组数据。本发明锂离子电池健康状态预测结果通过低频容量退化数据集、中频温度变化特征和剩余部分的预测值同循环周期叠加得到。
声明:
“多尺度锂离子电池健康状态的预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)