本发明涉及一种基于深度神经网络下的
锂电池荷电状态预测算法,包含以下步骤:S1:运行电动车,采集电动车锂电池组各个电池的端电压、温度以及电池组荷电状态;S2:将锂电池组从满电量运行至锂电池荷电状态为0%;S3:将不同老化程度的锂电池重复S1~S2,每个荷电状态进行多次采集;S4:将采集电池数据分为训练集和测试集,将训练集经过长短记忆神经网络进行训练,获取荷电状态观测器;S5:将测试集输入训练好的观测器测试模型的准确性,重复S4直至误差逼近规定阈值;S6:将传感器在线采集的单体电池的温度、电压输入到训练好的荷电状态观测器模型中,得到当前锂电池组的荷电状态值。本发明能够实现对电动车锂电池荷电状态的在线预测,其预测准确率可达93%。
声明:
“基于深度神经网络下的锂电池荷电状态预测算法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)