本发明提供一种基于灰狼群优化LSTM网络的锂离子电池剩余寿命预测方法,涉及锂离子电池技术领域。该方法首先获取锂离子电池的监测数据,并从中提取出锂离子电池容量数据;确定长短期记忆网结构,构造基于LSTM的锂离子电池剩余寿命预测模型;然后利用灰狼群算法优化锂离子电池剩余寿命直接预测模型中的关键参数,得到基于灰狼群优化LSTM网络的直接预测模型;利用优化数据确定最优的锂离子电池剩余寿命直接预测模型;最后利用最优的锂离子电池剩余寿命直接预测模型预测后期锂离子电池容量数据。本发明提供的基于灰狼群优化LSTM网络的锂离子电池剩余寿命预测方法,能够较为准确的预测锂离子电池剩余寿命。
声明:
“基于灰狼群优化LSTM网络的锂离子电池剩余寿命预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)