本发明提供了一种基于改进CSO‑LSTM网络的锂离子电池寿命预测方法及装置,具体包括以下步骤:(1)获取锂离子电池数据;(2)采用集合经验模态对电池数据进行预处理;(3)对预处理数据采用归一化方法进行处理,并划分训练集和测试集;(4)采用改进CSO选取LSTM最优超参数,建立基于改进LSTM的锂离子电池寿命预测模型;(5)将训练集输入到基于改进LSTM的锂离子电池寿命预测模型进行训练,得到基于改进CSO‑LSTM的锂离子电池寿命预测模型;(6)将测试集输入到训练好的锂离子电池寿命预测模型中,得到预测结果。本发明提供的锂离子电池寿命预测方法及装置有效的提高了锂离子电池寿命预测精度,对于提高锂离子电池的稳定性和安全性,具有重要的实际工程意义。
声明:
“基于改进CSO-LSTM网络的锂离子电池寿命预测方法及装置” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)