本发明提供了一种基于深度强化学习的AGC机组动态优化方法,本发明引入了强化学习中的深度Q网络(deep Q network,DQN)算法,通过智能体与环境的不断交互,根据环境反馈的奖励值,不断改进智能体的策略,实现对系统中不确定性变量的学习,避免了对系统中的不确定性变量的建模。本方法能够根据负荷和风电的预测信息,自适应学习预测带来的不确定性,使得所给出的结果,即各台AGC机组的调节量能够更加吻合电力系统实际有功缺额,有助于系统的频率稳定,解决大规模新能源并网带来的随机扰动问题。
声明:
“基于深度强化学习的AGC机组动态优化方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)