本发明公开了一种基于深度学习的风电机组叶片表面故障识别与分类方法,属于新能源发电领域。本发明将深度学习引入风电机组叶片表面故障识别,采用无人机拍摄风电机组叶片表面故障图像,将叶片图像数据集划分为训练集和验证集,搭建胶囊网络和卷积神经网络复合模型,并对该模型进行训练,使得模型能够对叶片表面故障进行识别与分类。本发明用于识别风电机组叶片图像,高效准确地实现了风电机组叶片表面故障识别与分类的目的,实例分析验证了本发明的实用性和通用性。
声明:
“基于深度学习的风电机组叶片表面故障识别与分类方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)