基于卷积神经网络的光热电场太阳直接法向辐射强度预测方法,利用深度学习中的CNN设计了一种CSP电场的DNI预测方法,以达到克服传统预测方法的缺点,且较为准确地得到预测值的目的,从而使CSP电站易于调度,及进一步减轻新能源发电并网时对现有电力系统造成的冲击。首先对太阳直接法向辐射的特点进行分析,根据得到的特点选用卷积神经网络,并对网络中的参数进行修改与调试,最终得到一种预测方法,以降低光热电站接入电网时带来的消极影响。本预测方法可以较为准确地预测光热电场的太阳直接法向辐射强度。
声明:
“基于卷积神经网络的光热电场太阳直接法向辐射预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)