本发明涉及一种基于粒子群算法小波神经网络的
光伏发电量的预测方法。该预测发明实现了
太阳能光伏发电量的预测,实现了粒子群算法和小波神经网络学习神经系统的有机结合,该预测系统包括粒子群算法对小波神经网络的模型参数优化的模块、优化后的小波神经网络学习训练模块和训练结束后的小波神经网络预测模块。该预测方法结合粒子群算法和小波神经网络各自的优点,有效地提高了预测精度,减少了预测误差,为
光伏发电的大规模并网提供技术支持,而且具有可移植性,只需要进行简单修改,可以为风能和其他新能源提供发电预测。
声明:
“基于粒子群算法小波神经网络的光伏发电量的预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)