本申请涉及一种基于改进的小波变换与神经网络的新能源功率预测方法。所述方法包括:获取多组气象数据样本和历史发电功率,确定每种变量类型下的气象数值样本与历史发电功率之间的相关度,得到与每个相关度阈值对应的初始变量类型,根据初始变量类型对应的第一训练精度,确定出目标阈值和目标变量类型,对多组气象数据样本进行聚类处理,得到每组气象数据样本所属的第一目标类别,对历史发电功率进行小波分解,采用目标气象样本和每个信号频率下的功率信号样本对多种初始功率预测模型进行训练,确定出与每种第一目标类别对应的功率预测模型。采用本方法能够遍历多个相关度阈值,对多种初始功率预测模型集成学习,从而提高功率预测模型的准确率。
声明:
“基于改进的小波变换与神经网络的新能源功率预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)