本发明涉及一种基于深度学习的电阻抗层析成像(Electrical Impedance Tomography,EIT)方法,适用于医学成像、工业过程成像和地质勘探等技术领域。所述方法包括:获取原始边界测量电压序列和电导率分布序列,并做归一化处理得到训练样本集合;建立初始EIT深度学习网络模型,根据训练样本集合和设定的训练模式训练EIT深度学习网络模型,使训练获得的EIT深度学习网络模型表征边界测量电压序列与电导率分布序列之间的映射关系;通过给映射关系输入边界测量电压序列,获取电导率分布序列,最后将电导率分布序列恢复为矩阵形式,得到EIT图像。本发明提出的成像方法简化了建模过程及问题的求解难度,解决了电阻抗层析成像逆问题求解时的非线性和病态问题,提高了逆问题的求解精度和图像重建质量。
声明:
“基于深度学习的电阻抗层析成像方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)