本发明公开了一种基于空间信息增强和深度信念网络的高光谱图像分类方法,主要解决现有技术对高光谱图像分类存在的精度提高不明显的问题,其技术方案为:1)对原始高光谱图像进行归一化和波段选择,得到反射率值在0到1之间的高光谱图像;2)通过波段分组和分组引导滤波对高光谱图像进行空间信息增强;3)针对空间信息增强后的高光谱图像特点构建深度信念网络模型;4)用空间信息增强后的高光谱图像进行模型的训练;用得到的模型对高光谱图像进行类别预测,得到分类结果。本发明在不损失原始光谱信息的情况下有效增强了高光谱图像空间信息,明显提高了分类精度,可用于环境、气候、农业以及矿物探测。
声明:
“基于空间信息增强和深度信念网络的高光谱图像分类方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)