一种基于深度神经网络的煤矿井下图像处理方法,采用AlexNet的网络结构模型,构建了八层卷积神经网络,利用Tensorflow深度学习训练框架完成对网络的训练;然后,针对五类图像质量亮度过高,亮度过低,噪点过高,对比度过低,分辨率过低的图像,利用其实现对初始训练后的卷积神经网络的训练和测试,以获得可实现图像质量分类的深度卷积神经网络;结合目前成熟的图像处理方法,分别针对不同质量类型的图像使用不同类型的图像处理方法。本发明内容不仅是矿井灾区侦检探测可视化必须解决的关键问题,也将为未来我国深部煤炭资源大规模安全开采提供知识储备和技术基础。
声明:
“基于深度神经网络的煤矿井下图像处理方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)