本发明公开了一种深度卷积神经网络的旋转机械健康评估方法,包括振动信号采集;网络训练集的构建;深度卷积网络的构建;深度卷积网络的训练;网络测试和健康指标的构建;健康指标评价。本发明结合深度学习强大特征提取能力的优势,训练标签设置考虑了分段线性退化。本发明将原始振动信号输入到深度卷积神经网络中,将深度卷积神经网络提取到的特征输入到深度神经网络中构建健康指标,利用多项式衰减学习效率高效训练神经网络。本发明能准确评估旋转机械健康状态,可广泛应用于化工、冶金、电力、航空等领域旋转机械健康评估,能准确描述这些零部件性能退化的动态过程,还能进行剩余寿命预测。
声明:
“深度卷积神经网络的旋转机械健康评估方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)