大量的含氮、磷废水排入水体会导致藻类疯狂生长繁殖卬,使水中溶解氧不断下降,水透明度变差,潜水植物光合作用受阻,鱼类等水生动物因溶解氧不足和藻类排放的大量毒素而死亡,最终水体生态系统被破坏,这种现象称为“水体富营养化”现象。
高浓度氨氮废水因其含氮量高、危害大,更是成为水处理领域的重点和难点。随着我国工业的快速发展,氨氮废水的来源变广,排放量急剧增加,氨氮废水的得到妥善处理迫在眉睫。
目前,处理氨氮废水的常见方法分为三大类:物理化学法、生物法、化学法。物化法包括:吹脱法、离子交换法等。吹脱法常用来处理高浓度氨氮废水,氨氮去除率高,但该法耗能大、运行成本高、塔板易堵塞。离子交换法一般采用具有离子选择交换性的沸石作为离子交换材料,该方法吸附氨氮的能力有限,并且存在离子交换剂再生难的问题。
化学法主要为磷酸铵镁沉淀法(MAP),该方法根据废水中氨氮浓度,加入一定比例的Mg2+和PO43-与氨氮生成难溶性复盐MgNH4PO4·6H2O,氨氮得以从废水中去除,该法操作简便、脱氮效率高,但药剂成本过高。生物法为处理氨氮废水的传统方法,该法处理氨氮废水没有前两类方法高效,但运行成本低,仍然是值得探索的处理氨氮废水的重要途径。
1、试验部分
1.1 试验用水
试验用水来自河南某化工厂产生的煤制气废水经“AO-MBR生物反应器”的出水。原煤制气废水经过前期的生物处理后,水质各项参数如表1所示。
由表1可知,煤制气废水经过一级生物处理后,COD降至200~350mg/L(原废水COD浓度>3000mg/L),氨氮去除效果不明显(原废水氨氮浓度1200mg/L左右)。一级生物处理氨氮去除效果不佳,可能是因为煤制气废水成分复杂,含有氰化物、硫氰化物、酚类化合物等有毒物质对硝化菌产生抑制作用,也可能是因为硝化菌群是化能自养型细菌",在有机物浓度较高时,难以成为优势菌,所以导致氨氮去除效果不好。所以尝试单独培养硝化菌,使硝化菌富集生长,继续处理一级生物出水的高浓度氨氮。
1.2 试验装置
硝化装置为有机玻璃柱形小试装置,高30cm,底部半径14cm,有效容积16L。图1为硝化装置示意图。
硝化装置为移动床生物膜反应器(
声明:
“高浓度氨氮废水MBBR生物硝化处理技术” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)