锂离子电池的自放电率低、没有记忆效应、放电电压平缓且对环境友好[1~3],广泛用于
新能源汽车、移动通信电源、交通动力电源、电力
储能电源等方面[4~6]
锂离子电池还在规模化储存可再生能源技术、绿色建筑、5G基站储能等方面,有良好的应用前景
锂离子电池的负极,是其重要的组成部分
石墨类材料,是制造锂离子电池的
负极材料之一
但是,石墨类负极的理论比容量较低,只有372 mAh/g[7,8]
作为转化反应型负极材料的过渡金属硫化物,其比容量较高
二维层状过渡金属硫属化物(TMDCs)是一种典型的MX2型负极材料[9],得到了广泛的应用[10~12]
这类过渡金属硫属化物材料作为锂离子电池负极,其理论比容量较高[13~15]
但是,过渡金属二硫化物类型的二维层状材料在快速充放电过程中或在电流密度较大的情况下其层状结构可能崩塌[16]
与其相比,具有不同结构的过渡金属三硫化物(TMTCs)具有较高的比容量[17,18]
TiS3是一种典型的过渡金属三硫化物,TiS3分子中的两个硫原子一个以S22-的形式存在,另一个以S2-的形式存在[19]
过渡金属三硫化物通过弱范德华键和强共价键连接,但是共价键所结合的基本结构不是TMTCs的一层而是一维链
这些链通过较弱的范德华力结合成为二维层状形态,再由这些层堆叠成三维棱柱结构的晶体
纳米材料的颗粒小、比表面积大、能与电解质充分接触,在充放电过程中缩短了粒子在材料内部的传输距离,使其物理化学性能提高[21,22]
当前,许多不同结构的材料可用于抑制锂离子嵌入/脱出引起的体积变化,例如纳米纤维[23]和三维层状花状结构[24]
低维纳米片状材料的单层结构,能适应循环过程中产生的体积变化[25]
TiS3材料具有优异的
电化学性能[26,27]
You-Rong Tao等用化学气相传输法(CVT)制备了TiS3纳米带
锂离子电池负极材料,发现TiS3纳米带负极的锂离子电池循环性能不理想[28]
Ge Sun等用固态反应制备的TiS3纳米带,作为
钠离子电池的负极其性能优良,电流密度为2 A/g 时500次循环后其比容量为346.3 mAh/g[29]
1 实验方法1.1 TiS3 纳米粒子的制备
先用直流电弧等离子体法制备TiH1.924作为前驱体:使用纯度为99.99%金属钛块作为负极,用钨棒作为正极,将直流电弧等离子体设备腔体的真空度抽至- 0.102 MPa后通入压力为0.03 MPa的氩气和0.02 MPa的氢气
在电流为80 A电压为25 V的条件下起弧制备纳米粉体
20 min后断弧,6 h后向直流电弧等离子体设备粉体制备室中通入0.005 MPa的空气进行钝化,约12 h后打开设备收集腔体内的TiH1.924纳米粉体
将制备好的TiH1.924纳米粒子以1∶4的质量比与升华硫混合均匀(升华硫过量),将其置于玻璃管内并通入氩气作为保护气,然后将玻璃管真空密封
再将密封后的玻璃管置于真空管式炉恒温区
将管式炉以10℃/min速率加热到400℃,保温120 min后随炉冷却,待管式炉的恒温区温度降至室温后取出样品
将得到的样品充分研磨后放入石英舟中,再将石英舟置于管式炉恒温区并抽真空后通入氩气保护,在200℃保温180 min后随炉冷却,待管式炉恒温区温度降至室温后取出TiS3纳米粒子样品
1.2 TiS3 纳米粒子的性能表征
用XRD-6000X射线衍射仪分析样品的物相组成,扫描范围5°~90°;用SU8220扫描电子显微镜(SEM)和Tecnai G2 F30场发射透射电子显微镜(TEM)观察样品的微观形貌特征
用原子力显微镜(AFM,DI-Multi-mode NS3A-02)测试样品的性能
用InVia拉曼光谱仪测试粉体的拉曼光谱,激发波长为532 nm
将TiS3纳米粉末与导电剂(Super-P) 导电炭黑、粘结剂(聚丙烯酸)按照7∶2∶1的质量比混合后在研钵中研磨均匀,在研磨过程中逐滴加入适量的N-甲基吡咯烷酮(NMP)直至浆料粘稠度适中
将浆料涂覆于铜箔上并在涂覆机中初步烘干,待冷却后将其置于恒温真空干燥箱中,在90℃干燥10 h,冷却后取出
将完全干燥的铜箔冲裁成直径为14 mm的圆形电极片并称量每个电极片的质量
在充满氩气保护气的手套箱中,以锂片为对电极、以1 mol/L LiPF6/EC+DE+FEC作为电解液组装CR2025纽扣电池
使用LAND CT2001A蓝电测试系统和CHI660E电化学工作站测试电池的电化学性能
2 结果和讨论2.1 TiS3 纳米粒子的形貌和结构
图1给出了TiS3的晶体结构示意图
TiS3分子中有3个硫原子,其中的两个以S22-的形式存在,另一个以S2-的形式存在
图2给出了钛氢化合物和TiS3纳米粉体的XRD衍射谱
图2a给出了钛氢化合物的XRD谱与TiH1.924的标准PDF卡片(JCPDS No.00-025-0982)对比,谱中的衍射峰分别对应(111), (200),(220),(311)和(222)晶面,钛氢化合物与TiH1.924的标准PDF卡片的特征峰一致
这表明,使用直流电弧等离子体法成功地制备出TiH1.924纳米粒子
图2b给出了TiS3纳米粉体的XRD图谱与TiS3的标准PDF卡片(JCPDS No.00-015-0783)对比,谱中的衍射峰分别对应(001),(101),(003),(012),(-201),(201),(013),(210)和(-105)晶面
图3给出了TiS3纳米材料的拉曼谱,可见在153、291和363 cm-1处出现三个明显的特征峰,与文献报道的TiS3特征峰一致[30]
153 cm-1处的峰与TiS3中的刚性链振动相关,291和363 cm-1处的峰与构成每个TiS3的每个单层的内部面外振动相关
拉曼图谱和XRD谱表明,本文在实验中成功地制备出单相TiS3晶体
图1
图1TiS3的晶体结构示意图
Fig.1Crystalline structure of TiS3
图2
图2TiH1.924和TiS3的XRD谱
Fig.2XRD patterns of TiH1.924 (a) and TiS3 (b)
图3
图3TiS3纳米片的Raman谱
Fig.3Raman spectra of TiS3 nanosheets
图4给出了前驱体TiH1.924的SEM和TEM照片
可以看出,前驱体TiH1.924纳米粒子的微观形貌近于球形,且分散良好
球形纳米粒子外表面有一层较薄的氧化层,是纳米粉体在空气中钝化生成的氧化层[31]
TiH1.924纳米粒子的半径约为几十纳米
TiS3纳米粉体呈相互交错堆叠的片状,测得其晶面间距为0.2682 nm,与TiS3(012)的晶格结构一致
图4
图4TiH1.924和TiS3的SEM和TEM照片
Fig.4SEM (a) and TEM images (c) of TiH1.924 and SEM (b) and TEM images of TiS3 (d, e)
图5a可见,TiS3纳米片的厚度约为几十纳米
图5b~d给出了对TiS3纳米片的AFM表征结果
在图5b的A-B和E-F区域中可观察到纳米片整齐的堆叠
用原子力显微镜测得纳米片厚度约为35 nm(图5c~d)
上述结果表明,本文用直流电弧法和固-气相反应两步反应成功地制备出了片状结构的TiS3纳米片
图5
图5TiS3纳米片的TEM、AFM照片以及厚度示意图
Fig.5TEM (a) andAFM images (b) of TiS3 andthe thickness of TiS3 nanosheets (c~d)
2.2 TiS3 电极的电化学性能
图6a给出了TiS3纳米片状结构电极的循环性能曲线
在电流密度为500 mA/g的条件下,电池的首次放电容量为839.7 mAh/g,首次充电容量为639.8 mAh/g,对应的库伦效率为76.2%
经过300次循环后电池的比容量保持在430 mAh/g左右,放电容量保持率为67.1%,库伦效率稳定在99%左右
图6b给出了TiS3负极材料在100、200、500 mA/g、1、2、5 A/g电流密度条件下的倍率性能曲线
可以看出,电流密度为5 A/g时TiS3负极材料的比容量仍能保持在280 mAh/g左右
TiS3负极经过大电流密度充放电后,电流密度为100 mA/g时电池的比容量稳定在600 mAh/g左右
这表明,与初始的在100 mA/g电流密度下测得的容量相比,容量保持率较高
图6
图6TiS3纳米粉体的充放电曲线和倍率性能曲线
Fig.6Cycling performance of TiS3 nano powder at 500 mA/g (a) and rate performance (b) of TiS3 nanosheet
从图7a给出的TiS3电极片循环前的SEM照片,可以观察到TiS3电极材料呈片状堆叠
图7b给出了TiS3纳米片电极循环500圈后的SEM照片
与循环前的形貌对比,可见TiS3电极保持了较完整的片状结构,表明这种结构的稳定性较高
TiS3负极在倍率性能测试中表现出高比容量和稳定的循环性能,源于TiS3纳米片在大电流密度下能很好地适应在多次放电/充电过程中产生的应变引起的体积变化而不会粉碎
图7
图7TiS3电极片循环前和循环500圈后的SEM照片
Fig.7SEM image of TiS3 electrode (a) before cycle, (b) after 500 cycles
图8a给出了使用TiS3电极的电池在500 mAh/g 电流密度下的充放电曲线
可以看出,电池的首圈充放电曲线的峰与电池循环伏安曲线中的峰高度吻合,且在200圈循环后容量逐渐稳定
这表明,这种材料表现出了良好的长期循环稳定性,循环200、250和300圈后充放电曲线重合度较好,也表明其可逆性很高
图8b给出了TiS3电极的循环伏安曲线
在首次放电过程中,在2.2 V、1.8 V、1.6 V、1.2 V、0.6 V和0.3 V附近出现了明显的电压平台
1.6 V和0.6 V的两个平台对应Li+嵌入TiS3纳米片[32],发生的氧化还原反应为
图8
图8TiS3纳米粉体的充放电曲线和CV曲线
Fig.8Charge/discharge voltage-specific capacity curves of TiS3 nano powder (a) and cyclic voltammograms of TiS3 nano powder (b)
TiS3+2Li++2e-?Li2TiS3
(1)
Li2TiS3+xLi++xe-?Li2+xTiS3
(2)
Li2TiS3+4e-?Li2S+Ti+2S2-
(3)
Li2S-2e-?2Li++S
(4)
在1.2 V和0.3 V处出现的峰,可能与SEI膜的生成有关
在1.8 V处只在第一次放电时出现平台,与进一步锂化后的复杂相变有关
在2.2 V、1.6 V和0.6 V处出现的放电平台,可归结为Li+离子嵌入TiS3中发生的多步反应
首次充电时,在1.4 V、1.9 V、2.4 V和2.5 V附近出现了明显的电压平台
2.4 V处的电压平台,可归因于合成TiS3反应过程中去硫时残留的少量硫单质
循环3圈后2.4 V的峰消失,此时少量的非晶态S发生了不可逆的反应[33]
图9给出了TiS3电极在不同的充放电循环过程中的非原位XRD谱
根据初始状态电极片的非原位XRD测得的物质为TiS3;电池放电至1.8 V时TiS3的峰消失,对应锂离子嵌入TiS3生成了非晶态LixTiS3,因此非原位XRD上没有出现明显的峰;当电池放电至0.01 V时,与放电至1.8 V相比,在15°附近出现了馒头状的峰,在23°附近出现了较宽的衍射峰,可归结为结晶性不好的S单质,在38°和44°出现的两个峰可归结为Ti单质的形成
这表明,在TiS3纳米片负极放电完全的情况下,有单质Ti和单质S生成[33]
当电池充电至2.4 V时,单质Ti和单质S与Li重新结合生成Li x TiS3
这种物质可能是非晶态的,因此在XRD谱中没有明显的峰;当电池充电至3 V时XRD谱中的两个峰,可归结为TiS3的生成
经过充放电循环电极材料仍为TiS3,表明这种材料具有良好的可逆性
在43°和50°出现的两个较强峰,可归结为负极集流体中的Cu
图9
图9TiS3电极片在充放电过程中的非原位XRD谱
Fig.9Ex situ XRD pattern from 5° to 55° of TiS3 electrodes at different discharge-charge states
2.3 电化学阻抗谱
图10a~b给出了TiS3纳米片负极恒流电化学交流阻抗谱(EIS)的测试结果,图中的右上角为EIS的局部放大图
从Nyquist阻抗图可见,曲线分为两部分
图中的半圆形对应高频区域,近似为一条斜线的区域对应低频区[34]
图11a给出了第一圈循环后EIS中的等效电路模拟图,图11b给出了随后循环的EIS中的等效电路模拟图
表1列出了不同循环次数后拟合得到的空间电荷电容CPE1、CPE2和电荷转移阻抗R2、R3, IF
根据公式
Ζ'=R1+Rct+σWω-0.5
(5)
D0=R2T2/(2A2n4F4C2σw2)
(6)
IF=RT/(nAFR2)
(7)
可以计算出Warburg系数σW、锂离子扩散系数D0以及法拉第电流密度
式中R为理想气体常数(8.314 J·mol-1·K-1),T为室温(298 K),A为电解质和电极之间的接触面积(1.54 cm2),n为电极发生的氧化还原反应中每摩尔活性物质转移的电子数,F为法拉第常数(96500 C·mol-1),C为Li+的浓度(1 mol·L-1)
图10
图10TiS3电极循环不同次数后的电化学阻抗谱
Fig.10EIS curves of the TiS3 electrode after different number of cycles (a) before cycle、1st cycle、5th cycle, (b) before cycle、10th cycle、20th cycle、50th cycle
图11
图11TiS3电极材料循环前和循环后电化学阻抗谱的等效电路模拟
Fig.11Equivalent analog circuits of TiS3 electrode before cycle (a) and after cycle (b)
Table 1
表1
表1TiS3纳米片电极的模拟电路参数
Table 1Equivalent circuit parameters of TiS3 nanoparticles electrode
Sample
|
CPE1
|
CPE2
|
R2
|
R3
|
σW/Ω·cm2·s-0.5
|
D0/cm2·s-1
|
IF/mA·cm-2
|
Initial
|
3.561×10-5
|
-
|
62.63
|
-
|
28.986
|
6.366×10-11
|
2.665×10-4
|
1st cycle
|
5.355×10-4
|
1.371×10-4
|
11.98
|
28.16
|
40.987
|
3.184×10-11
|
1.393×10-3
|
5th cycle
|
2.766×10-4
|
1.056×10-7
|
23.64
|
0.809
|
31.275
|
5.468×10-11
|
7.061×10-4
|
10th cycle
|
1.217×10-4
|
1.969×10-6
|
19.05
|
1.595
|
24.712
|
8.759×10-11
|
8.763×10-4
|
20th cycle
|
1.476×10-4
|
1.413×10-6
|
20.84
|
1.600
|
41.579
|
3.094×10-11
|
8.010×10-4
|
50th cycle
|
1.333×10-4
|
6.508×10-7
|
27.51
|
1.572
|
48.890
|
2.237×10-11
|
6.149×10-4
|
Note: CPE1—Space charge capacitances, CPE2—Space charge capacitances, R2—Charge transfer resistances, R3—Charge transfer resistances, σW—Warburg coefficient, D0 —Diffusion coefficient of Li+, IF—Faradic current density
可以看出,循环未开始时电池的电荷转移阻抗(R2)较大,因为TiS3是一种导电性能较差的
半导体材料
在第一次循环后测得的阻抗高频区有两个明显的半圆,第一个半圆归因于首次循环时生成的SEI膜,第二个半圆为电解液浸入电极材料内部
从表1可以看出,从循环第1圈到第10圈,D0和IF不断增大
其原因是,随着循环数的增加SEI膜的生成和电解液浸入电极材料内部,促进了锂离子的扩散和迁移
从循环第10圈到第50圈,随着循环次数的增加R3的值变化很小,表明已经生成了完整的SEI膜
而IF的值不断减小,其原因可能是TiS3在循环过程中分解生成不导电的S,从而降低了电极的导电性
3 结论
(1) 先用直流电弧等离子体蒸发法制备前驱体TiH1.924,然后进行简单的固-气相反应可制备出片状TiS3纳米粒子
与传统的将Ti与S混合作为前驱体制备TiS3材料的方法相比,将纳米TiH1.924颗粒与硫混合加热能很好地控制TiS3纳米片的尺寸,反应时间也大幅度缩短
(2) TiS3纳米片能适应充放电过程中发生的体积变化
使用厚度约为35 nm纳米片负极的电池,在电流密度为100 mA/g时循环300圈后其容量仍约为450 mAh/g
当电流密度为5 A/g时其放电比容量保持在240 mAh/g,电流密度降低到100 mA/g则其放电比容量稳定在500 mAh/g
(3) 这种TiS3纳米片锂离子电池负极材料的电化学性能良好,且其制备工艺简单、成本较低
参考文献
View Option 原文顺序文献年度倒序文中引用次数倒序被引期刊影响因子
[1]
Patil A, Patil V, Shin D W, et al.
Issue and challenges facing rechargeable thin film lithium batteries
[J]. Mater. Res. Bull., 2008
[本文引用: 1]
[2]
Whittingham M S.
Lithium batteries and cathode materials
[J]. Chem. Rev., 2004, 35(50): 4271
[3]
Luo F, Chu G, Huang J, et al.
Fundamental scientific aspects of lithium batteries (Ⅷ)——Anode electrode materials
[J]. Energy Storage Science and Technology, 2014, 02(2): 146
[本文引用: 1]
罗 飞, 褚 赓, 黄 杰 等.
锂离子电池基础科学问题(Ⅷ)——负极材料
[J]. 储能科学与技术, 2014, 02(2): 146
[本文引用: 1]
[4]
Larcher D, Tarascon J M.
Towards greener and more sustainable batteries for electrical energy storage
[J]. Nat. Chem., 2015, 7(1): 19
DOIPMID [本文引用: 1] " />
The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
[6]
Yayathi S, Walker W, Doughty D, et al.
Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications
[J]. J. Power Sources, 2016, 329(oct.15) : 197
[本文引用: 1]
[7]
Aurbach D, Markovsky B, Weissman I, et al.
On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries
[J]. Electrochim. Acta, 1999, 45(1-2): 67
DOIURL [本文引用: 1]
[8]
Martin, Winter, Jürgen, et al.
Insertion Electrode Materials for Rechargeable Lithium Batteries
[J]. Adv. Mater., 1998, 10(10): 725
DOIURL [本文引用: 1]
[9]
Chhowalla M, Shin H S, Eda G, et al.
The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
[J]. Nat. Chem., 2013, 5(4): 263
DOIPMID [本文引用: 1] " />
New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.
[23]
Cao M, Wang X, Zhang M, et al.
Electromagnetic Response and Energy Conversion for Functions and Devices in Low‐Dimensional Materials
[J]. Adv. Funct. Mater, 2019, 29(25): 1
[本文引用: 1]
[24]
Han C, Cao W Q, Cao M S.
Hollow nanoparticle-assembled hierarchical NiCo2O4 nanofibers with enhanced electrochemical performance for lithium-ion batteries
[J]. Inorg. Chem. Front., 2020, 7: 4101
DOIURL [本文引用: 1]
[25]
Cao W, Wang W, Shi H, et al.
Hierarchical three-dimensional flower-like Co3O4 archi- tectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries
[J]. Nano, 2018, 011(003): 1437
[本文引用: 1]
[26]
Island, J O, Barawi M, Biele R, et al.
TiS3 Transistors with Tailored Morphology and Electrical Properties
[J]. Adv. Mater., 2015, 27(16): 2595
DOIURL [本文引用: 1]
[27]
Tanibata N, Matsuyama T, Hayashi A, et al.
All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity
[J]. J Power Sources, 2015, 275: 284
DOIURL [本文引用: 1]
[28]
Tao Y R, Xiong W W, Wu X C.
Titanium Tri- and di-Sulfide Nanobelts/Graphene Composites for Rechargeable Lithium Battery Cathodes and Enhancement of Reversible Capacities
[J]. Sci. Adv. Mater., 2014, 6(9): 1965
DOIURL [本文引用: 1]
[29]
Sun G, Wei Z, Chen N, et al.
Quasi-1D TiS3: A potential anode for high-performance sodium-ion storage
[J]. Chem. Eng. J., 2020, 388: 1
[本文引用: 1]
[30]
Xiao Y D, Jin X Z, Huang H, et al.
Preparation and electrochemical behaviors of MoP banoparticles as anode material for lithium-ion batteries
[J]. Chin. J. Mater. Research, 2019, 3(1): 65
[本文引用: 1]
肖雅丹, 靳晓哲, 黄 昊 等.
MoP纳米粒子锂离子电池负极材料的制备及其电化学性能
[J]. 材料研究学报, 2019, 33(1): 65
DOI [本文引用: 1]
用直流电弧等离子体法制备
金属钼纳米粉体再使其与赤磷发生固相反应,用两步法制备出磷化钼纳米粒子
使用X射线衍射(XRD)和透射电镜(TEM)等手段表征磷化钼纳米粒子的结构并进行了电化学性能测试
结果表明,MoP纳米粒子呈球状,粒径为20~50 nm;在电流密度为100 mA/g的条件下MoP纳米粒子负极材料的首次放电比容量达到746 mAh/g,50次循环后放电比容量为241.9 mAh/g;电流密度为2000 mA/g时放电比容量为99.90 mAh/g,电流密度恢复到100 mA/g其放电比容量仍然保持247.60 mAh/g
用作锂离子电池的负极材料,MoP纳米粒子具有优异的稳定性和可逆性
[31]
Wu K, Torun E, Sahin H, et al.
Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3
[J]. Nat. Commun., 2016, 7: 12952.
DOIPMID [本文引用: 1] class="outline_tb" " />
Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.
[5]
Dunn B, Kamath H, Tarascon J M.
Electrical Energy Storage for the Grid: A Battery of Choices
[J]. Science, 2011, 334(6058): 928
PMID " />
Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.
[10]
Luo Q, Huang H.
Preparation and electrochemical properties of TiS2 nanoparticle porous anode materials
[J]. J Funct. Mater., 2020, 51(06): 06022
罗 倩, 黄 昊.
TiS2纳米片多孔负极材料的制备及其电化学性能
[J].
功能材料, 2020, 51(06): 06022
[11]
Zeng Z, Tan C, Xiao H, et al.
Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction
[J]. Energy Environ. Sci., 2014, 7(2): 797
[12]
Pan S, Yin Z, Cheng Q, et al.
Bifunctional TiS2/CNT as efficient polysulfide barrier to improve the performance of lithium-sulfur battery
[J]. J Alloys Compd., 2020, 832: 154947
[13]
Zong J, Wang F, Zhao J, et al.
Rational design of strong chemical coupling carbon coated N-doped C@MoS2@C nanotubes for high-performance lithium storage
[J]. J Alloys Compd., 2020, 832: 154947
[14]
Luo, B, Fang, et al.
Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage
[J]. Energy Environ. Sci., 2012, 5: 5226
[15]
Xia J, Yuan Y, Yan H, et al.
Electrospun SnSe/C nanofibers as binder-free anode for lithium-ion and sodium-ion batteries
[J]. J. Power Sources, 2019, 449: 227559
[16]
Peng L, Zhu Y, Chen D, et al.
Two-Dimensional Materials for Beyond-Lithium-Ion Batteries
[J]. Adv Energy Mater., 2016, 6,1600025
[17]
Tanibata N, Matsuyama T, Hayashi A, et al.
All-solid-state sodium batteries using amorphous TiS3 electrode with high capacity
[J]. J. Power Sources, 2015, 275: 284
[18]
Hawkins C G, Whittaker-Brooks L.
Controlling Sulfur Vacancies in TiS2-x Cathode Insertion Hosts via the Conversion of TiS3 Nanobelts for Energy-Storage Applications
[J]. Acs Appl. Nano Mater., 2018, 1(2): 851
[19]
Wang L J.
Study on photoelectric characteristics of narrow-band and wide-band oxide radial heterostructures
[D].
Harbin:
Harbin Engineering University, 2009
王丽娇.
窄带宽带氧化物径向异质纳米结构光电特性研究
[D].
哈尔滨:
哈尔滨工程大学, 2009
[20]
Wu J, Wang D, Liu H, et al.
An ab initio study of TiS3: a promising electrode material for rechargeable Li and Na ion batteries
[J]. Rsc Adv., 2015, 5(28): 21455
[21]
Ji L, Lin Z, Alcoutlabi M, et al.
Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries
[J]. Energy Environ. Sci., 2011, 4(8): 2682
[22]
Aric A S, Bruce P, Scrosati B, et al.
Nanostructured Materials for Advanced Energy Conversion and Storage Devices
[J]. Nat. Mater., 2005, 4(5): 366
PMID " />
用直流电弧等离子体法制备金属钼纳米粉体再使其与赤磷发生固相反应,用两步法制备出磷化钼纳米粒子
使用X射线衍射(XRD)和透射电镜(TEM)等手段表征磷化钼纳米粒子的结构并进行了电化学性能测试
结果表明,MoP纳米粒子呈球状,粒径为20~50 nm;在电流密度为100 mA/g的条件下MoP纳米粒子负极材料的首次放电比容量达到746 mAh/g,50次循环后放电比容量为241.9 mAh/g;电流密度为2000 mA/g时放电比容量为99.90 mAh/g,电流密度恢复到100 mA/g其放电比容量仍然保持247.60 mAh/g
用作锂离子电池的负极材料,MoP纳米粒子具有优异的稳定性和可逆性
[31]
Wu K, Torun E, Sahin H, et al.
Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3
[J]. Nat. Commun., 2016, 7: 12952.
PMID
Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S-S molecular oscillations. High-pressure Raman studies further reveal that the A(g)(S-S) S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.
[32]
Grayfer ED, Pazhetnov E M, Kozlova M N, et al.
Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries
[J]. Chem Sus Chem, 2017, 10(24): 4805
[33]
Yin Y X, Xin S, Guo Y G, et al.
Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
[J]. Angew. Chem., 2013, 52(50): 13186
[本文引用: 2]
[34]
Meddings N, Heinrich M, Overney F, et al.
Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review
[J]. J. Power Sources, 2020, 480: 228742
Issue and challenges facing rechargeable thin film lithium batteries
1
2008
声明:
“锂离子电池负极材料TiS3 纳米片的制备和性能” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)