亚稳β钛合金有比强度高、深淬透性好和冷热成型性能优良等特点,在航空航天、海洋工程、轨道交通等领域有广阔的应用前景[1~5]
这类合金常可用于制造负载的结构件,因此对其强度和塑性等力学性能的要求很高
亚稳β钛合金的组织对热处理十分敏感,热处理对β基体内析出次生α相的形貌、尺寸、分布和体积分数有显著的影响,使其强度和塑性不同[6]
因此,热处理可在较大区间内调整这类合金的强度和塑性[7~9]
关于热处理后亚稳β钛合金的组织、强度和塑性,已经有大量的研究工作[10]
Li等[11]发现,经过850℃/1 h固溶处理和500℃/2 h单级时效处理的Ti-2Al-9.2Mo-2Fe合金强度最高,其抗拉强度为1543 MPa,达到了超高强钛合金标准
Zheng等[12]的研究发现,固溶+双级时效处理也能大幅度提高亚稳β钛合金的强度
在预时效阶段析出的ω相在二次时效阶段促进次生α相形核,进而生成更加细小弥散且分布均匀的次生α相,从而使合金的强度提高
马权等[13]对TB8合金进行固溶+双级时效处理后发现,次生α相明显细化使合金抗拉强度的提高超过了17%
Zhou等[14]则发现,与其他热处理工艺相对,固溶+随炉冷却处理也能显著提高合金的力学性能,生成枝晶状生长的α相实现了强度与塑性的良好匹配
这些结果表明,固溶+单级时效处理、固溶+双级时效处理、固溶+随炉冷却处理等不同的热处理工艺,对亚稳β钛合金析出的次生α相及强度和塑性产生不同的影响
Ti-6Mo-5V-3Al-2Fe-2Zr (%,质量分数)合金是一种新型的亚稳β钛合金,基于Mo当量准则和d-电子成分设计方法设计,其Mo当量为12.15,Bo、Md值分别为2.7823、2.3765
作为一种新型亚稳β钛合金,热处理工艺对其组织、强度和塑性的影响尚不十分清楚
鉴于此,本文对该合金分别进行固溶+单级时效处理、固溶+双级时效处理以及固溶+随炉冷却处理,研究热处理工艺对Ti-6Mo-5V-3Al-2Fe-2Zr合金的次生α相以及强度和塑性的影响
1 实验方法
实验用材料为亚稳β钛合金Ti-6Mo-5V-3Al-2Fe-2Zr (%,质量分数)
将高纯海绵钛、Al-Mo中间合金、Al-V中间合金、纯铁和海绵锆经过两次真空自耗熔炼,得到直径为12 mm的亚稳β钛合金Ti-6Mo-5V-3Al-2Fe-2Zr (%,质量分数)铸锭,对其在β相区锻造得到合金板材
用电火花线切割在板材上切取实验用试样
采用公式法和金相法测定该合金的相变点
根据加入不同合金元素后合金相转变温度的变化估算合金的相变点 [15]
℃Tβi=882℃+∑fi(xi)
(1)
式中的882℃为纯钛的相转变温度,fi (xi )为合金中各元素对相变点的影响值
使用 式(1)计算出该合金相变点的理论值为856.24℃
在该值附近选取不同温度,用金相法测量相变点,最终确定该合金β相转变温度为855℃±5℃
本文的研究对象为次生α相,因此选择β相转变点(870℃)以上的温度进行固溶处理,一生成单一β相组织,从而避免初生α相对实验结果的影响
根据文献[16,17],以典型的600℃/8 h时效处理作为本实验的单级时效处理制度,以典型的400℃/2 h预时效处理作为本实验双级时效的预时效处理制度
为了便于对比,以600℃作为随炉冷却的初始温度
将切取的试样分别进行固溶+单级时效处理(HT1)、固溶+双级时效处理(HT2)和固溶+随炉冷却处理(HT3),热处理工艺在图1中给出
图1
图1合金的热处理工艺
Fig.1Heat treatment process (a) solution and single-stage aging; (b) solution and two-stage aging; (c) solution and furnace cooling
是用Nordlys Nano型EBSD探测器观察和分析电解抛光后试样的晶粒尺寸和析出相 (抛光液为6%高氯酸+35%正丁醇+59%甲醇),步长为0.04 μm
使用腐蚀液(氢氟酸∶硝酸∶水=1∶3∶7)腐蚀经过金相砂纸打磨、机械抛光后的合金试样表面,用S-3400N型扫描电子显微镜观察试样的显微组织
使用WDW-100型电子万能试验机分别对三种热处理后的试样进行室温拉伸实验,以测定其拉伸性能,计算其抗拉强度、屈服强度以及断后伸长率
使用S-3400N型扫描电子显微镜观察断口形貌,分析其断裂形式
2 实验结果2.1 显微组织
图2给出了热处理前Ti-6Mo-5V-3Al-2Fe-2Zr合金的EBSD图像,可见其组织全部为β相
图2
图2热处理前合金的EBSD图像
Fig.2EBSD image of the alloy before heat treatment
图3给出了经过不同工艺的热处理后Ti-6Mo-5V-3Al-2Fe-2Zr合金的显微组织
由图3a和3b可见,经过HT1处理后在β晶界处生成了连续的晶界α相(αgb);在β晶粒内析出了短棒状次生α相(αi)
由图3c和3d可见,经过HT2处理后在β晶界处也生成了连续的αgb相,但是在β晶粒内析出的αi相数量更多且大部分尺寸较小
其原因是,在预时效阶段生成的ω相在后续高温时效阶段促进αi相的形核从而生成了细小弥散的αi相[18~21]
但是,由图3d可见,一些优先形核的αi相在后续高温时效阶段充分的生长而使部分αi相长大而粗化
由图3e和3f可见,经过HT3处理后在β晶界处生成了由αgb相形核并向晶内平行生长的αwgb相,在β晶粒内析出的αi相由短棒状变为针状,宽度明显减小且间距变窄
图3
图3不同热处理后合金的显微组织
Fig.3Microstructure of the alloy after different heat treatment (a) HT1, grain boundary; (b) HT1, intragranular; (c) HT2, grain boundary; (d) HT2, intragranular; (e) HT3, grain boundary; (f) HT3, intragranular
图4给出了经过不同热处理的合金的EBSD图像
图4a、b、c的解析率分别为96.23%、96.12%和95.56%,三者的解析率较高且差异较小
用EBSD进一步分析了次生α相
结果表明,经过HT1、HT2、HT3处理后合金的β晶粒内析出的αi相尺寸逐渐减小,且在β晶界处均生成了连续的αgb相;与HT1和HT2相比,经过HT3处理后合金的晶界处生成了αwgb相,与图3中合金的显微组织相同
用EBSD统计次生α相(αs)的体积分数φ(αs)并结合图3统计αi相的平均间距λ,结果列于表1
可以看出,不同的热处理使αs相体积分数变化的趋势为,HT2>HT3>HT1;αi相平均间距的变化趋势为,HT1>HT2>HT3
图4
图4热处理后合金的EBSD图像
Fig.4EBSD images of the alloy after different heat treatment (a) HT1; (b) HT2; (c) HT3
Table 1
表1
表1热处理工艺对αs相体积分数和αi相平均间距的影响
Table 1Effect of heat treatment on the volume fraction of αs phase and the average spacing of αi phase
Heat treatment
|
φ(αs)/%
|
λ/nm
|
HT1
|
34.8
|
88.75
|
HT2
|
40.3
|
64.85
|
HT3
|
37.5
|
47.15
|
2.2 合金的拉伸性能
合金经过不同工艺的热处理前后的屈服强度(Rp0.2)、抗拉强度(Rm)、断后伸长率(A)和强塑积(Psp),列于表2
可以看出,经过三种工艺的热处理后合金的强度都大幅度提高;与HT1处理相比,HT2热处理使合金的屈服强度和抗拉强度提高,断后伸长率由5.1%降低为4.8%,合金的塑性没有明显的变化;HT3处理后合金的屈服强度和抗拉强度进一步提高,其断后伸长率也明显提高;在三种热处理中,HT3处理后合金的强塑积最高,为10.94 GPa%,其强度与塑性匹配最佳
Table 2
表2
表2热处理对合金拉伸性能的影响
Table 2Effect of heat treatment on tensile properties of the alloy
Heat treatment
|
Rp0.2/MPa
|
St.dev
|
Rm/MPa
|
St.dev
|
A/%
|
St.dev
|
Psp/GPa%
|
Before HT
|
784
|
9
|
891
|
10
|
9.1
|
0.22
|
8.11
|
HT1
|
1099
|
22
|
1196
|
26
|
5.1
|
0.17
|
6.10
|
HT2
|
1256
|
19
|
1352
|
21
|
4.8
|
0.21
|
5.68
|
HT3
|
1324
|
13
|
1421
|
11
|
7.7
|
0.13
|
10.94
|
2.3 合金的断口形貌
图5给出了经过三种工艺热处理后合金的拉伸断口形貌
由图5可见,HT1处理和HT2处理后合金的拉伸断口均呈现出冰糖状特征和较浅的韧窝,其断裂方式为脆性断裂
经过HT3处理后合金的拉伸断口同时呈现出沿晶断裂特征和穿晶断裂特征,韧窝的数量更多且尺寸更大,其断裂方式开始向韧脆混合型断裂转变,表明合金具有较好的塑性
合金拉伸断口的观察结果,与表2中合金塑性的变化趋势相符
图5
图5不同热处理后试样的拉伸断口的形貌
Fig.5Fracture morphology of tensile specimens after different heat treatment (a) HT1; (b) HT2; (c) HT3
3 讨论
亚稳β钛合金的拉伸性能强化机制,包括合金元素于β基体的固溶强化、β晶界强化、初生α相与β基体的界面强化和次生α相析出强化
因此,合金的屈服强度可表示为[22~24]:
Rp0.2=Rν+Rss+Rgb+Rpb+Rpcpt
(2)
式中Rν为单晶摩擦应力影响项,Rss为合金元素于β基体的固溶强化影响项,Rgb为β晶界强化影响项,Rpb为初生α相与β基体的界面强化影响项,Rpcpt为次生α相析出强化影响项
对显微组织的观察结果表明,在本文的实验中未观察到初生α相,于是 式(2)改为
νRp0.2=Rν+Rss+Rgb+Rpcpt
(3)
根据 式(3)计算出次生α相析出强化影响量为
νRpcpt,exp=Rp0.2,exp–(Rν+Rss+Rgb)
(4)
式中Rpcpt, exp为次生α相析出强化影响量,Rp0.2, exp为合金的屈服强度,Rν+Rss+Rgb的值则等于热处理前合金的屈服强度
由此计算出的Rpcpt, exp数值,列于表3
Table 3
表3
表3不同热处理后合金中次生α相的析出强化影响量
Table 3αs precipitation strength after different heat treatment
Heat
treatment
|
Rp0.2,exp
/MPa
|
Rν+Rss+Rgb
/MPa
|
Rpcpt,exp
/MPa
|
HT1
|
1099
|
784
|
315
|
HT2
|
1256
|
784
|
472
|
HT3
|
1324
|
784
|
540
|
由表3可见,经过不同工艺的热处理后生成的次生α相的体积分数、相间距等明显不同,进而影响合金强度的变化
文献[25]证实,次生α相的体积分数、相间距是热处理后亚稳β钛合金强度的主要影响因素
图6给出了经过不同工艺的热处理后合金中次生α相体积分数φ(αs)、αi相平均间距λ与次生α相析出强化影响量Rpcpt,exp之间的关系
由图6a可见,φ(αs)与Rpcpt,exp之间的关系不是线性的,表明次生α相的体积分数并不是该合金强度变化的决定因素
由图6b可见,随着λ的增大Rpcpt,exp逐渐减小,表明αi相平均间距决定了合金强度的变化
图6
图6Rpcpt,exp与φ(αs )和λ的关系
Fig.6Dependence of Rpcpt,exp on φ(αs ) and λ (a) the dependence of Rpcpt,exp on φ(αs ); (b) the dependence of Rpcpt,exp on λ
位错的运动很难绕过密排六方结构的αi相[26~28],因此合金中的大量αi/β界面能有效地阻碍位错的滑移,使其在αi/β界面处大量堆积
因此,可用位错堆积模型解释次生α相的强化
位错堆积前端的局部应力为Nτb,αi/β界面阻碍位错运动而产生的排斥力为τ*b,在平衡状态下[29]
Nτb=τ*b
(5)
式中τ为位错运动施加的应力;τ*为αi/β界面产生的应力场,其值与位错源的位置以及界面能量有关,b为伯格斯矢量
同时,堆积位错的数量可表示为[30]
πN=π(1-v)τλ/2Gb
(6)
式中v为泊松比;G为剪切模量
设位错源位于两个αi相之间,λ/2为位错的运动距离,则根据 式(5)和 式(6)可得位错滑移穿过αi/β界面的临界应力
πτc=2Gbτ*π(1-v)τλ=k0/λ
(7)
式中k0为材料常数
式(7)表明,τc与λ-1/2呈线性关系
图7给出了不同工艺热处理后合金的屈服强度与λ-1/2的关系
可以看出,整体呈现出近似线性相关的关系,与 式(7)给出的结论相符,即随着αi相平均间距的减小合金的强度提高
图7
图7Rp0.2与λ-1/2的关系
Fig.7Dependence of Rp0.2 on λ-1/2 after heat treatment
经过HT1和HT2处理的合金,其塑性均较差
其原因是,与被αi相强化的β基体相比,在β晶界处生成的连续αgb相弱化了晶界,使裂纹易于在αgb/β界面处萌生并沿其扩展,对合金的塑性产生了严重的不良影响[31~33]
这也与合金拉伸断口的沿晶断裂特征相符
但是,经过HT3处理后,在合金的β晶界处生成了由αgb相形核并向晶内扩展的αwgb相,不仅为沿晶裂纹扩展提供了更多的路径,而且消耗了沿晶裂纹的能量,减缓了其扩展速率,从而改善了合金塑性
这也与对合金拉伸断口的观察结果相符
4 结论
(1) 在三种工艺热处理的Ti-6Mo-5V-3Al-2Fe-2Zr合金的晶内析出了αi相,在晶界生成了连续的αgb相;与固溶+单级时效处理与固溶+双级时效处理相比,固溶+随炉冷却处理析出的αi相间距最小,且在晶界处生成了向晶内平行生长的αwgb相
(2) 与固溶+单级时效处理及固溶+双级时效处理相比,固溶+随炉冷却处理的Ti-6Mo-5V-3Al-2Fe-2Zr合金强度和塑性匹配最佳,其抗拉强度为1421 MPa,屈服强度为1324 MPa,断后伸长率为7.7%
(3) 经不同工艺的热处理后Ti-6Mo-5V-3Al-2Fe-2Zr合金晶内析出的αi相间距是影响其强度的主要因素,随着αi相间距的减小合金的强度提高;αwgb相的生成,使合金的塑性显著改善
参考文献
View Option 原文顺序文献年度倒序文中引用次数倒序被引期刊影响因子
[1]
Sun H Y, Zhao J, Liu Y A, et al.
Effect of C addition on microstructure and mechanical properties of Ti-V-Cr burn resistant titanium alloys
[J]. Chin. J. Mater. Res., 2019, 33: 537
DOI [本文引用: 1] " />
用真空自耗熔炼制备了不同C含量的三种阻燃钛合金铸锭(直径120 mm),其名义成分分别为Ti-35V-15Cr、Ti-35V-15Cr-0.075C和Ti-35V-15Cr-0.15C
将铸锭包套挤压成直径为25 mm的棒材,观察了铸锭和挤压棒材的微观组织,测试并分析了挤压棒材的室温拉伸性能、高温拉伸性能、热稳定性能、高温蠕变以及持久性能
结果表明:添加C使阻燃钛合金热挤压后的晶粒显著细化,使其室温和高温拉伸塑性提高;由于碳化物的吸氧作用,添加C的合金热稳定性能显著提高;添加适量的C可提高阻燃钛合金的高温蠕变和持久性能
[2]
Wu X Y, Chen Z Y, Cheng C, et al.
Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy
[J]. Chin. J. Mater. Res., 2019, 33: 785
DOI " />
研究了不同热处理条件下Ti65钛合金板材的显微组织和织构的变化规律,分析了板材织构的类型和热处理影响拉伸强度的机制
结果表明,热处理对板材的显微组织和织构类型具有显著的影响
通过热处理可分别得到具有等轴组织、双态组织或片层组织的板材
等轴组织板材的织构为晶体c轴与板材RD方向呈现70°~90°夹角的B/T型织构,双态组织和片层组织板材的主要织构类型与等轴组织类似,且出现晶体学c轴与RD方向平行的织构
双态组织板材内的位错和亚结构使板材的室温拉伸强度提高,但是对高温拉伸变形的阻碍能力有限
板材中的织构是影响合金力学性能各向异性的主要因素
经980℃/1 h/AC+700℃/4 h/AC热处理后的板材横、纵向拉伸强度的差异最小,且都具有较高的室温拉伸性能和最佳的650℃拉伸性能
[3]
Qin Q H, Peng H B, Fan Q C, et al.
Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys
[J]. J. Alloys Compd., 2018, 739: 873
DOIURL
[4]
Ouyang D L, Lu S Q, Cui X, et al.
Kinetics of dynamic recrystallization of TB6 Ti-alloy during hot compressive deformation at temperatures of β-phase range
[J]. Chin. J. Mater. Res., 2019, 33: 918
欧阳德来, 鲁世强, 崔 霞 等.
TB6钛合金β区变形的动态再结晶动力学
[J]. 材料研究学报, 2019, 33: 918
[5]
Liu Y Y, Zhang L, Shi X N, et al.
High cycle fatigue properties and fracture behavior of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy
[J]. Rare Met. Mater. Eng., 2018, 47: 3666
DOIURL [本文引用: 1]
[6]
Wang X M, Zhang S Q, Yuan Z Y, et al.
Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy
[J]. Chin. J. Mater. Res., 2017, 31: 409
DOI [本文引用: 1] " />
研究了固溶时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金拉伸性能的影响
结果表明:在800℃/30 min+500℃/12 h处理后,合金的硬度和抗拉强度达到极大值,其延伸率和断面收缩率没有明显的降低
合金的硬度和强度的提高是ω和α析出相共同作用的结果
在合金的热轧态和热处理态的断口都出现了大量的韧窝,表明其为典型的韧性断裂
[7]
Wang X Y, Yang J R, Zhang K R, et al.
Atomic-scale observations of B2→ω-related phases transition in high-Nb containing TiAl alloy
[J]. Mater. Charact., 2017, 130: 135
DOIURL [本文引用: 1]
[8]
Wang G Q, Zhao Z B, Yu B B, et al.
Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246
[J]. Chin. J. Mater. Res., 2017, 31: 352
DOI " />
研究了热处理温度和冷却方式对Ti6246合金显微组织、相组成以及室温拉伸性能的影响
结果表明:固溶热处理后合金的相组成主要与冷却方式有关
在β单相区及(α+β)两相区固溶后水冷,β相均转化为α′′马氏体和少量亚稳β相
空冷组织中的β相转变为含有少量次生α相的β转变组织,随着热处理温度的提高次生α相的含量逐渐增加,尺寸也逐渐增大
时效后组织中的亚稳相发生分解,析出细小的次生α相
固溶后水冷试样的拉伸曲线上出现“双屈服”现象,且随着固溶温度的提高合金第一屈服点逐渐升高
水淬和空冷合金试样在595℃/8 h时效后其室温拉伸强度提高,延伸率及断面收缩率降低,水淬试样室温拉伸性能的变化更大
固溶后空冷且在595℃时效处理的合金,其室温拉伸性能可达到较好的强塑性匹配
[9]
Wang P Y, Zhang H Y, Zhang Z P, et al.
Effect of solution temperature on microstructure and tensile properties of metastable β-Ti alloy Ti-4Mo-6Cr-3Al-2Sn
[J]. Chin. J. Mater. Res., 2020, 34: 473
[本文引用: 1]
王鹏宇, 张浩宇, 张志鹏 等.
固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响
[J]. 材料研究学报, 2020, 34: 473
[本文引用: 1]
[10]
Fan J K, Li J S, Kou H C, et al.
Microstructure and mechanical property correlation and property optimization of a near β titanium alloy Ti-7333
[J]. J. Alloys Compd., 2016, 682: 517
DOIURL [本文引用: 1]
[11]
Li C L, Mi X J, Ye W J, et al.
Microstructural evolution and age hardening behavior of a new metastable beta Ti-2Al-9.2Mo-2Fe alloy
[J]. Mat. Sci. Eng., 2015, 645A: 225
[本文引用: 1]
[12]
Zheng Y F, Williams R E A, Sosa J M, et al.
The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-Titanium alloys
[J]. Acta Mater., 2016, 103: 165
DOIURL [本文引用: 1]
[13]
Ma Q, Cao D.
Effect of double aging treatment on microstructure and mechanical property of TB8 titanium alloy
[J]. Trans. Mater. Heat Treat., 2017, 38(10): 41
[本文引用: 1]
马 权, 曹 迪.
双级时效处理对TB8合金组织和性能的影响
[J]. 材料热处理学报, 2017, 38(10): 41
[本文引用: 1]
[14]
Zhou W, Ge P, Zhao Y Q, et al.
Evolution of primary α phase morphology and mechanical properties of a novel high-strength titanium alloy during heat treatment
[J]. Rare Met. Mater. Eng., 2017, 46: 2852
DOIURL [本文引用: 1]
[15]
Sun S Y, Deng C.
Accurate calculation of α+β/β phase transition of titanium alloys based on binary phase diagrams
[J]. Titanium Industry Progress, 2011, 28(3): 21
[本文引用: 1]
孙书英, 邓 超.
基于二元相图精确计算钛合金α+β/β相变点
[J]. 钛工业进展, 2011, 28(3): 21
[本文引用: 1]
[16]
Xu Y F, Wen J, Xiao Y F, et al.
Effects of duplex aging on microstructure and mechanical properties of Ti-25Nb-10Ta-1Zr-0.2Fe alloy
[J]. Chin. J. Nonferrous Met., 2016, 26: 1912
DOIURL [本文引用: 1]
许艳飞, 文 璟, 肖逸锋 等.
双级时效对Ti-25Nb-10Ta-1Zr-0. 2Fe医用β钛合金显微组织与力学性能的影响
[J]. 中国
有色金属学报, 2016, 26: 1912
[本文引用: 1]
[17]
Wen J H, Ge P, Yang G J, et al.
Effect of heat treatment process on microstructure and tensile properties of Ti-1300 alloy
[J]. Rare Met. Mater. Eng., 2009, 38: 1490
[本文引用: 1]
汶建宏, 葛 鹏, 杨冠军 等.
热处理工艺对Ti-1300合金的组织和拉伸性能的影响
[J].
稀有金属材料与工程, 2009, 38: 1490
[本文引用: 1]
[18]
Zheng Y F, Williams R E A, Wang D, et al.
Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys
[J]. Acta Mater., 2016, 103: 850
DOIURL [本文引用: 1]
[19]
Li P, Yuan B G, Xue K M, et al.
Microstructure and properties of hydrogenated TB8 alloy
[J]. Rare Met., 2017, 36: 242
DOIURL
[20]
Li T, Kent D, Sha G, et al.
The role of ω in the precipitation of α in near-β Ti alloys
[J]. Scr. Mater., 2016, 117: 92
DOIURL
[21]
Zhang H Y, Wang C, Zhang S Q, et al.
Evolution of secondary α phase during aging treatment in novel near β Ti-6Mo-5V-3Al-2Fe alloy
[J]. Materials (Basel), 2018, 11: 2283
DOIURL [本文引用: 1]
[22]
He T, Feng Y, Liu X H, et al.
Microstructure evolution of ω and α phase of β-CEZ alloy during the solution treatment and aging process
[J]. Rare Met. Mater. Eng., 2018, 47: 2711
[本文引用: 1]
何 涛, 冯 勇, 刘向宏 等.
β-CEZ钛合金在固溶时效时ω相与α相的组织演化规律
[J]. 稀有金属材料与工程, 2018, 47: 2711
[本文引用: 1]
[23]
Chen Y Y, Du Z X, Xiao S L, et al.
Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy
[J]. J. Alloys Compd., 2014, 586: 588
DOIURL
[24]
Ren L, Xiao W L, Chang H, et al.
Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment
[J]. Mater. Sci. Eng., 2018, 711A: 553
[本文引用: 1]
[25]
Shang G Q, Kou F C, Fei Y, et al.
Influence of aging processing on microstructure and mechanical properties of Ti-10V-2Fe-3Al alloy
[J]. Rare Met. Mater. Eng., 2010, 39: 1061
[本文引用: 1]
商国强, 寇宏超, 费 跃 等.
时效工艺对Ti-10V-2Fe-3Al合金显微组织和力学性能的影响
[J]. 稀有金属材料与工程, 2010, 39: 1061
[本文引用: 1]
[26]
Mantri S A, Choudhuri D, Alam T, et al.
Tuning the scale of α precipitates in β-titanium alloys for achieving high strength
[J]. Scripta Mater., 154: 139
[本文引用: 1]
[27]
Kar S K, Suman S, Shivaprasad S, et al.
Processing-microstructure-yield strength correlation in a near β Ti alloy, Ti-5Al-5Mo-5V-3Cr
[J]. Mater. Sci. Eng., 2014, 610A: 171
[28]
Shekhar S, Sarkar R, Kar S K, et al.
Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy, Ti-5Al-5V-5Mo-3Cr
[J]. Mater. Des., 2015, 66: 596
DOIURL [本文引用: 1]
[29]
Zhu W G, Lei J, Zhang Z X, et al.
Microstructural dependence of strength and ductility in a novel high strength β titanium alloy with Bi-modal structure
[J]. Mater. Sci. Eng., 2019, 762A: 138086
[本文引用: 1]
[30]
Du Z X, Xiao S L, Xu L J, et al.
Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy
[J]. Mater. Des., 2014, 55: 183
DOIURL [本文引用: 1]
[31]
Xue Q, Ma Y J, Lei J F, et al.
Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability
[J]. J. Mater. Sci. Technol., 2018, 34: 2325
DOI [本文引用: 1] class="outline_tb" " />
The ingots with 120 mm diameter of burn resistant Ti-alloys with nominal composition of Ti-35V-15Cr, Ti-35V-15Cr-0.075C and Ti-35V-15Cr-0.15C were produced by vacuum arc consumable smelting. These ingots were deformed into bars with 25 mm diameter by sheathed extrusion. The microstructures of the ingots and extruded bars of burn resistant Ti-alloys were investigated. The tensile property, thermal stability and creep properties of the extruded bars of burn resistant Ti-alloys were tested under different conditions. The results show that burn resistant Ti-alloys with C addition have better ductility in tensile test due to refined grain size resulted from the sheathed extrusion process. Carbide can act as a stable sink for dissolved oxygen in the matrix, to improve the tensile ductility of the alloy even after hot exposure. In sum, the moderate C addition can improve the creep properties of burn resistant Ti-alloys.
孙欢迎, 赵 军, 刘翊安 等.
C含量对Ti-V-Cr系阻燃钛合金微观组织和力学性能的影响
[J]. 材料研究学报, 2019, 33: 537
用真空自耗熔炼制备了不同C含量的三种阻燃钛合金铸锭(直径120 mm),其名义成分分别为Ti-35V-15Cr、Ti-35V-15Cr-0.075C和Ti-35V-15Cr-0.15C
将铸锭包套挤压成直径为25 mm的棒材,观察了铸锭和挤压棒材的微观组织,测试并分析了挤压棒材的室温拉伸性能、高温拉伸性能、热稳定性能、高温蠕变以及持久性能
结果表明:添加C使阻燃钛合金热挤压后的晶粒显著细化,使其室温和高温拉伸塑性提高;由于碳化物的吸氧作用,添加C的合金热稳定性能显著提高;添加适量的C可提高阻燃钛合金的高温蠕变和持久性能
[2]
Wu X Y, Chen Z Y, Cheng C, et al.
Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy
[J]. Chin. J. Mater. Res., 2019, 33: 785
" />
研究了不同热处理条件下Ti65钛合金板材的显微组织和织构的变化规律,分析了板材织构的类型和热处理影响拉伸强度的机制
结果表明,热处理对板材的显微组织和织构类型具有显著的影响
通过热处理可分别得到具有等轴组织、双态组织或片层组织的板材
等轴组织板材的织构为晶体c轴与板材RD方向呈现70°~90°夹角的B/T型织构,双态组织和片层组织板材的主要织构类型与等轴组织类似,且出现晶体学c轴与RD方向平行的织构
双态组织板材内的位错和亚结构使板材的室温拉伸强度提高,但是对高温拉伸变形的阻碍能力有限
板材中的织构是影响合金力学性能各向异性的主要因素
经980℃/1 h/AC+700℃/4 h/AC热处理后的板材横、纵向拉伸强度的差异最小,且都具有较高的室温拉伸性能和最佳的650℃拉伸性能
[3]
Qin Q H, Peng H B, Fan Q C, et al.
Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys
[J]. J. Alloys Compd., 2018, 739: 873
[4]
Ouyang D L, Lu S Q, Cui X, et al.
Kinetics of dynamic recrystallization of TB6 Ti-alloy during hot compressive deformation at temperatures of β-phase range
[J]. Chin. J. Mater. Res., 2019, 33: 918
欧阳德来, 鲁世强, 崔 霞 等.
TB6钛合金β区变形的动态再结晶动力学
[J]. 材料研究学报, 2019, 33: 918
[5]
Liu Y Y, Zhang L, Shi X N, et al.
High cycle fatigue properties and fracture behavior of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy
[J]. Rare Met. Mater. Eng., 2018, 47: 3666
[6]
Wang X M, Zhang S Q, Yuan Z Y, et al.
Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy
[J]. Chin. J. Mater. Res., 2017, 31: 409
" />
研究了固溶时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金拉伸性能的影响
结果表明:在800℃/30 min+500℃/12 h处理后,合金的硬度和抗拉强度达到极大值,其延伸率和断面收缩率没有明显的降低
合金的硬度和强度的提高是ω和α析出相共同作用的结果
在合金的热轧态和热处理态的断口都出现了大量的韧窝,表明其为典型的韧性断裂
[7]
Wang X Y, Yang J R, Zhang K R, et al.
Atomic-scale observations of B2→ω-related phases transition in high-Nb containing TiAl alloy
[J]. Mater. Charact., 2017, 130: 135
[8]
Wang G Q, Zhao Z B, Yu B B, et al.
Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246
[J]. Chin. J. Mater. Res., 2017, 31: 352
" />
研究了热处理温度和冷却方式对Ti6246合金显微组织、相组成以及室温拉伸性能的影响
结果表明:固溶热处理后合金的相组成主要与冷却方式有关
在β单相区及(α+β)两相区固溶后水冷,β相均转化为α′′马氏体和少量亚稳β相
空冷组织中的β相转变为含有少量次生α相的β转变组织,随着热处理温度的提高次生α相的含量逐渐增加,尺寸也逐渐增大
时效后组织中的亚稳相发生分解,析出细小的次生α相
固溶后水冷试样的拉伸曲线上出现“双屈服”现象,且随着固溶温度的提高合金第一屈服点逐渐升高
水淬和空冷合金试样在595℃/8 h时效后其室温拉伸强度提高,延伸率及断面收缩率降低,水淬试样室温拉伸性能的变化更大
固溶后空冷且在595℃时效处理的合金,其室温拉伸性能可达到较好的强塑性匹配
[9]
Wang P Y, Zhang H Y, Zhang Z P, et al.
Effect of solution temperature on microstructure and tensile properties of metastable β-Ti alloy Ti-4Mo-6Cr-3Al-2Sn
[J]. Chin. J. Mater. Res., 2020, 34: 473
王鹏宇, 张浩宇, 张志鹏 等.
固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响
[J]. 材料研究学报, 2020, 34: 473
[10]
Fan J K, Li J S, Kou H C, et al.
Microstructure and mechanical property correlation and property optimization of a near β titanium alloy Ti-7333
[J]. J. Alloys Compd., 2016, 682: 517
[11]
Li C L, Mi X J, Ye W J, et al.
Microstructural evolution and age hardening behavior of a new metastable beta Ti-2Al-9.2Mo-2Fe alloy
[J]. Mat. Sci. Eng., 2015, 645A: 225
[12]
Zheng Y F, Williams R E A, Sosa J M, et al.
The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-Titanium alloys
[J]. Acta Mater., 2016, 103: 165
[13]
Ma Q, Cao D.
Effect of double aging treatment on microstructure and mechanical property of TB8 titanium alloy
[J]. Trans. Mater. Heat Treat., 2017, 38(10): 41
马 权, 曹 迪.
双级时效处理对TB8合金组织和性能的影响
[J]. 材料热处理学报, 2017, 38(10): 41
[14]
Zhou W, Ge P, Zhao Y Q, et al.
Evolution of primary α phase morphology and mechanical properties of a novel high-strength titanium alloy during heat treatment
[J]. Rare Met. Mater. Eng., 2017, 46: 2852
[15]
Sun S Y, Deng C.
Accurate calculation of α+β/β phase transition of titanium alloys based on binary phase diagrams
[J]. Titanium Industry Progress, 2011, 28(3): 21
孙书英, 邓 超.
基于二元相图精确计算钛合金α+β/β相变点
[J]. 钛工业进展, 2011, 28(3): 21
[16]
Xu Y F, Wen J, Xiao Y F, et al.
Effects of duplex aging on microstructure and mechanical properties of Ti-25Nb-10Ta-1Zr-0.2Fe alloy
[J]. Chin. J. Nonferrous Met., 2016, 26: 1912
许艳飞, 文 璟, 肖逸锋 等.
双级时效对Ti-25Nb-10Ta-1Zr-0. 2Fe医用β钛合金显微组织与力学性能的影响
[J]. 中国有色金属学报, 2016, 26: 1912
[17]
Wen J H, Ge P, Yang G J, et al.
Effect of heat treatment process on microstructure and tensile properties of Ti-1300 alloy
[J]. Rare Met. Mater. Eng., 2009, 38: 1490
汶建宏, 葛 鹏, 杨冠军 等.
热处理工艺对Ti-1300合金的组织和拉伸性能的影响
[J]. 稀有金属材料与工程, 2009, 38: 1490
[18]
Zheng Y F, Williams R E A, Wang D, et al.
Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys
[J]. Acta Mater., 2016, 103: 850
[19]
Li P, Yuan B G, Xue K M, et al.
Microstructure and properties of hydrogenated TB8 alloy
[J]. Rare Met., 2017, 36: 242
[20]
Li T, Kent D, Sha G, et al.
The role of ω in the precipitation of α in near-β Ti alloys
[J]. Scr. Mater., 2016, 117: 92
[21]
Zhang H Y, Wang C, Zhang S Q, et al.
Evolution of secondary α phase during aging treatment in novel near β Ti-6Mo-5V-3Al-2Fe alloy
[J]. Materials (Basel), 2018, 11: 2283
[22]
He T, Feng Y, Liu X H, et al.
Microstructure evolution of ω and α phase of β-CEZ alloy during the solution treatment and aging process
[J]. Rare Met. Mater. Eng., 2018, 47: 2711
何 涛, 冯 勇, 刘向宏 等.
β-CEZ钛合金在固溶时效时ω相与α相的组织演化规律
[J]. 稀有金属材料与工程, 2018, 47: 2711
[23]
Chen Y Y, Du Z X, Xiao S L, et al.
Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy
[J]. J. Alloys Compd., 2014, 586: 588
[24]
Ren L, Xiao W L, Chang H, et al.
Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment
[J]. Mater. Sci. Eng., 2018, 711A: 553
[25]
Shang G Q, Kou F C, Fei Y, et al.
Influence of aging processing on microstructure and mechanical properties of Ti-10V-2Fe-3Al alloy
[J]. Rare Met. Mater. Eng., 2010, 39: 1061
商国强, 寇宏超, 费 跃 等.
时效工艺对Ti-10V-2Fe-3Al合金显微组织和力学性能的影响
[J]. 稀有金属材料与工程, 2010, 39: 1061
[26]
Mantri S A, Choudhuri D, Alam T, et al.
Tuning the scale of α precipitates in β-titanium alloys for achieving high strength
[J]. Scripta Mater., 154: 139
[27]
Kar S K, Suman S, Shivaprasad S, et al.
Processing-microstructure-yield strength correlation in a near β Ti alloy, Ti-5Al-5Mo-5V-3Cr
[J]. Mater. Sci. Eng., 2014, 610A: 171
[28]
Shekhar S, Sarkar R, Kar S K, et al.
Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy, Ti-5Al-5V-5Mo-3Cr
[J]. Mater. Des., 2015, 66: 596
[29]
Zhu W G, Lei J, Zhang Z X, et al.
Microstructural dependence of strength and ductility in a novel high strength β titanium alloy with Bi-modal structure
[J]. Mater. Sci. Eng., 2019, 762A: 138086
[30]
Du Z X, Xiao S L, Xu L J, et al.
Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy
[J]. Mater. Des., 2014, 55: 183
[31]
Xue Q, Ma Y J, Lei J F, et al.
Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability
[J]. J. Mater. Sci. Technol., 2018, 34: 2325
The microstructure evolution and phase composition of an α + β titanium alloy, Ti-3Al-5Mo-4.5V (wt.%), have been investigated. Electron probe micro analysis (EPMA) quantitative results manifest that the stability of β phase decreases with increasing quenching temperature, which is influenced by the significant variation of β-stabilizing elements concentration. Detailed microstructure analysis shows that the β → ω phase transformation does occur when quenching at 750 °C and 800 °C. The ω-reflections change from incommensurate ω-spots (750 °C) to ideal ω-spots (800 °C) as the β stability of the alloy decreases. Further the decrease of β phase stability encourages the formation of athermal α′′ martensite, which has the following orientation relationships: [111]β//[110]α′′, [100]β//[100]α′′ and [-110]β//[00-1]α′′ with respect to the β matrix.
[32]
Li C, Zhang X Y, Li Z Y, et al.
Effect of heat treatment on microstructure and mechanical properties of ultra-fine grained Ti-55511 near β titanium alloy
[J]. Rare Met. Mater. Eng., 2015, 44: 327
[33]
Sasaki L, Hénaff G, Arzaghi M, et al.
Effect of long term aging on the fatigue crack propagation in the β titanium alloy Ti 17
[J]. Mat. Sci. Eng., 2017, 707A: 253
C含量对Ti-V-Cr系阻燃钛合金微观组织和力学性能的影响
1
2019
声明:
“热处理对Ti-6Mo-5V-3Al-2Fe-2Zr合金拉伸性能的影响” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)