本发明公开了一种铜冶炼废渣应用于烧结的处理方法,包括以下步骤:将铜冶炼废渣破碎成粒度为100%小于5mm,10%小于1mm的颗粒,铜冶炼废渣粉料;将铜冶炼废渣粉料与红土镍矿进行配料并混匀,得到混匀矿粉;将混匀矿粉与固体燃料、复合熔剂和返矿进行配料,接着混合均匀,得到待烧结混合料;并将待烧结混合料在圆筒混合机内混匀与制粒,得到待烧结粒料将待烧结粒料在烧结机中布料、点火、烧结和冷却,得到初级烧结矿;将初级烧结矿进行冷却、破碎和筛分,得到成品烧结矿。本发明的方法不仅可以回收利用铜冶炼废渣中铁和铜元素,避免铜、铁分离难的问题,还可以减少固体废气物的排放,节省大量的固废处理费用,有效降低生产成本,达到可持续发展的目的。
一种利用副产氟硅酸生产活性磷肥的方法,包括如下步骤:(1)磷矿粉的制备:将低品位磷矿在风扫磨中研磨粉碎,制备出粒度为过80~200目的磷矿粉;(2)混合:将制得的磷矿粉送入碾轮混合机内,边搅拌研磨边通过雾化喷头加入水;然后向增湿的磷矿粉中通过雾化喷头加入浓度为20%以上的氟硅酸;最后通过雾化喷头加入活化剂;继续将以上物料在碾轮混合机中碾压、混合、均化、粉碎即可得到成品。本发明的优点是:1.使原来无工业价值或价值不大的低品位磷矿得到了利用;2.该方法选用了合适的磷矿粉和活化剂的固液比,生产过程简单,投资小、成本低,不需要传统磷肥生产的熟化过程,生产过程中没有含氟气体无组织排放的情况,无污染。
本发明涉及一种从钨锡铜铅废渣回收钽铌的方法,包括以下步骤:废渣破碎精选:将钨锡铜铅废渣精选,得到精选矿;熔炼:对精选矿进行熔炼,取上层矿渣;强磁选矿:将所得矿渣破碎后,使用强磁选矿,得到钽铌钨混合粒矿;焙烧:将所得钽铌钨混合粒矿与木炭、碳酸钠混合焙烧;浸出钨:将所得的混合物与水混合浸泡,过滤得到浸出渣;稀酸除硅:将所得浸出渣与稀盐酸混合,浸出过滤得到脱硅渣;烘干:将所得脱硅渣烘干得到人造铌钽精矿。本发明还涉及一种适用上述熔炼步骤的平炉,包括炉体、坩埚、炉芯平台及出烟气管道。所述坩埚与所述炉芯平台设置于所述炉体内部;所述出烟气管道设置于所述炉体顶部;所述炉体整体密封;所述坩埚为两节结构。
本发明涉及一种免烧路面砖及其制备方法。该免烧路面砖包括底层和面层,所述面层覆盖于所述底层上,所述底层与所述面层的厚度比为2‑6:1;底层由盾构渣土,第一粒化高炉矿渣以及第一碱性激发剂构成;面层由碎石、砂和钢渣中的一种或多种,第二粒化高炉矿渣以及第二碱性激发剂构成,碎石、砂和钢渣中的一种或多种与所述第二粒化高炉矿渣的质量比为7‑8:2‑3,碎石、砂和钢渣中的一种或多种与所述第二粒化高炉矿渣的总质量与所述第二碱性激发剂的质量比为1:0.10‑0.12,在确保路面砖的透水性和蓄水性的同时,提高了路面砖的抗压强度和抗冻性,确保了其抗折性能以及耐磨性能。本发明还提出了上述免烧路面砖的制备方法。
一种基于图像特征分析的浮选回收率预测方法,本发明以工业摄像机获取选矿过程的泡沫图像基础,通过采用相对红色分量提取颜色特征,结合形态学与分水岭方法分割泡沫图像并提取尺寸特征,利用像素分析方法提取承载量特征,采用图像对的相关性分析方法提取泡沫速度、破碎率等动态特征。采用最小二乘支持向量机(LSSVM)建立回收率预测模型,以图像特征作为模型输入,并采用动态堆栈的野值数据剔除方法,通过10折交叉验证实现模型参数优化。本发明可用于矿物浮选回收率预测,实现浮选生产操作优化,进而可提高矿物回收率,减少矿物资源浪费。
本发明公开了回收废弃抛光粉中稀土组分的方法,本发明根据抛光粉失效的原因,首先通过破碎和粉碎工艺是稀土氧化物暴露出来,并且进一步通过草酸清洗去除稀土氧化物表面的其他污染物,暴露出稀土氧化物的晶面,然后通过高效的捕收剂在浮选过程中对其进行捕收,从而实现稀土组份的回收。本发明通过干燥脱水、破碎、磨矿、清洗、浮选、脱水过滤、烘干等工序,将废弃抛光粉中的稀土组分作为精矿选别出来,可作为抛光粉的再生利用。同时在稀土组分被浮选出来后,剩下的尾矿中大部分是SiO2和Al2O3,随着技术发展成熟,今后可用于方钠石的合成制作,做到无尾矿生产。
一种含钒石煤加浓硫酸及添加剂堆浸提钒的方法,具体步骤为:将石煤矿石粉碎;按照重量份的比例配比,将配比好的石煤矿粉、浓硫酸、添加剂水溶液通过机械搅拌至混合均匀,直至有小球团产生,并堆成锥形,反应2-5天;在常温常压下,将堆浸反应完全的石煤矿粉送至搅拌浸出反应釜,按照固液重量比为1:0.8-1.2的比例加水进行机械搅拌浸出,加入还原剂硫代硫酸钠还原,加入碳酸钙调节PH值,经过带式过滤机或板框压滤机进行固液分离,得到蓝色含钒母液;所得母液再经溶剂萃取或离子交换、沉钒、干燥煅烧,即得到五氧化二钒。本发明节省和降低了矿石粉磨成本,减少了粉磨设备和基建安装投入。
本发明公开了一种废弃印刷电路板分选前的预处理工艺,其步骤是:a、将废弃印刷电路板粉碎后加入表面活性剂磨矿5~15min,磨矿浓度控制在25~35%,表面活性剂加入量为1-3kg/t;b、将磨矿后的废弃印刷电路板取出后,在废弃印刷电路板加入调整剂,调整剂用量为400-800g/t,并搅拌均匀;c、将矿浆加温至55~65摄氏度,强搅拌25~35min均匀后,进行废弃塑料与金属的分离。对废弃印刷电路板进行分选前的预处理,具有良好的效果,较好的实现了疏水性塑料与金属的分离,分离金属的回收率可达75%以上。该方法具有工艺流程简单、效果好、无污染等特点。
本发明涉及一种工程材料制备工艺,具体是一种道路工程用复合泥土固化剂的制备方法,按比例称取磷矿石、固化污泥、建筑废渣、石灰石;将称取后的原料倒入装载斗中;将装载斗中的原料间断性的投入到焙烧破碎设备中,对原料焙烧并对焙烧后的原料破碎;将从焙烧破碎设备中排出的原料过筛;向过筛后的原料中加入表面活性剂并搅拌,再加入六甲基二硅氧烷,继续搅拌。以污泥、废磷矿石、建筑废渣作为主原料制备复合泥土固化剂,实现废料的循环利用,利用废磷矿石的孔隙结构吸收泥土中的重金属离子,再借助石灰石吸水的功效,吸收泥土中的水分,减小复合泥土的流动性,使重金属离子锁在废磷矿石上的孔隙中。
本发明公开了一种复杂煤层条件下的单体支柱工作面矸石机械化充填方法,通过井筒和巷道布置、矸石运输、回采工作面充填矸石和矸石压实的工作流程,通过煤矿的主井从回采工作面开采煤炭并由运煤刮板输送机运出;通过副井将地面破碎的矸石经回风大巷运至矸石仓,矸石仓内的矸石由运矸煤层上山内的料斗依次转运至回风平巷内的运矸刮板输送机上和回采工作面的充填刮板输送机上,充填刮板输送机安装在经单体液压支柱升降的充填平台上,矸石经斜向刮矸器将矸石刮落至采空区,并用拉溜器压实采空区堆起的矸石。本发明克服了现有技术不能在南方煤层倾角较大煤矿应用的缺陷,适用于复杂煤层煤矿特别是南方煤层倾角较大的煤矿应用。
本实用新型公开的新型超微粒水磨装置,是由转 盘18、研磨转子14、转子套12、转子轴11、转子轴上、下调 整圈10和23、转子轴上压圈7、转子轴下挡板22和转子垫圈 21构成。具有能耗低、效率高、构造简单、能适合干、湿式粉 碎等特点,既可用于有色金属矿产破磨、非金属矿产超细粉碎、 水泥熟料细破、生石灰和石灰岩砂石粉碎、日用化工超微粉碎、 黑色金属细破等,又能进行湿式粉碎作业,用作各种浓度浆粉 的粉碎;既能破磨硬质物料,也可对低硬度物料如石墨、滑石 等物料进行冲刷破磨,是建材、矿产、化工、煤炭等行业提高 产量、降低成本的最佳设备。
一种冶金物料与碳酸钠机械活化焙烧方法,将冶金物料与碳酸钠经机械活化——粉碎成粒度达负150目的细粉,冶金物料包含钨冶金物料黑乌钨矿、白钨金矿及低品位钨中矿,高杂质相钼铁合金,稀土精矿,机械活化可在冶金物料与碳酸钠拌和前分别进行也可在两者拌和后进行。本发明的优点在于,采用机械活化工艺,使冶金物料与碳酸钠反应接触增大、接触更加充分、紧密,从而使焙烧反应的活化能减小,加快反应速度,降低焙烧温度,节约能源,保护环境,降低成本,且有效地防止焙烧物粘结。
本发明提供一种生产玻璃用石英粉的制备方法:包括选用二氧化硅品位≥95%且经破碎后平均直径在2-5mm的石英矿石,先采用色选机除杂,所述矿石再先后经初步球磨、整形球磨、浮选除杂和可选的酸浸除杂步骤而得到所述石英粉;其中,所述初步球磨是指采用直径为15~45mm的球在球磨机中球磨所述矿石,且初步球磨用球为两种以上不同直径的氧化铝球;整形球磨步骤中采用均一直径的球,且球的直径在8~20mm之间,整形球磨步骤中还加入含醇羟基的助磨剂助磨。本发明还提供一种使用铁尾矿代替石英矿石且增加磁选过程的石英粉制备方法。本发明所得石英粉在品位和化学元素均达标的情况下,其堆密度大,且休止角低。
一种用低硫钾比卤水制取硫酸钾的方法,包括以下步骤:(1)原卤经蒸发得到钾混盐矿;(2)晒制光卤石矿;(3)将所得光卤石矿送至氯化钾车间,经破碎、分解、浮选和脱卤,得到氯化钾精矿;(4)将钾混盐矿送至软钾镁矾车间,经破碎,与步骤(3)中所得脱卤后的尾矿,加水混合,经磨矿、转化、浮选、分离和洗涤,得软钾镁矾精矿;(5)将软钾镁矾精矿和氯化钾精矿,加水,混合,经转化得到硫酸钾产品。本发明通过改进盐湖硫酸钾生产现有的工艺技术路线,弥补现有技术中利用低硫钾比卤水生产硫酸钾的不足,为利用低硫钾比盐湖卤水生产硫酸钾提供工艺简单、流程短,成本低和无污染的合理可行的生产方法。
本发明提供了一种从锌窑渣尾渣中回收有价元素的方法,包括以下步骤:a)提供锌窑渣尾渣,所述锌窑渣尾渣含有100g/t~180g/t的Ag和20.0%~30.0%的C;b)将所述步骤a)所述的锌窑渣尾渣磨碎至粒度为-0.074mm占60%以上的粉末,得到矿浆;c)将所述步骤b)得到的矿浆与煤油、丁基铵黑药和起泡剂2#油混合均匀后进行粗选,得到第一粗银碳精矿和第一尾矿;d)将所述步骤c)得到的第一粗银碳精矿与水玻璃混合均匀后进行精选,得到银碳精矿;e)将所述步骤c)得到的第一尾矿与煤油、丁基铵黑药和起泡剂2#油混合均匀后进行扫选;所述步骤d)与所述步骤e)没有顺序限制。
本发明公开了一种含泥石英岩制备超高纯石英粉及综合利用工艺,包括以下步骤:1)破碎;2)磨矿;3)水洗脱泥;4)擦洗脱泥;5)强磁选;6)强磁选精矿弱磁选;7)强磁选尾矿多级浮选;8)浮选精矿酸洗。本发明依据含泥石英岩的组分及嵌布特征,设计破碎‑磨矿‑水洗脱泥‑擦洗脱泥‑强磁选‑强磁选精矿弱磁选‑强磁选尾矿多级浮选‑浮选精矿酸洗的工艺,最后获得超高纯石英粉、高纯石英粉、铁精矿、硅微粉原料四种产品,实现了含泥石英岩制备超高纯石英粉及石英岩的综合利用。本发明制备得到的超高纯石英粉中SiO2的含量达到99.97%以上,高纯石英粉中SiO2的含量达到99.50%以上。本发明实现了无尾矿排放,符合绿色矿山的思想,同时增加了企业的经济效益,符合时代发展趋势。
本发明公开了一种分级筛分预排碳酸钙的萤石联合浮选工艺:(1)将矿物破碎至8mm以下;(2)采用3mm振动筛对步骤一中细碎后的矿物进行筛分,3mm以下产品磨矿至‑200目以下占80~85%,3mm以上产品作尾矿丢弃;(3)步骤(2)中磨矿后的产品,依次加入活化剂碳酸钠、抑制剂水玻璃、捕收剂进行粗选,保持矿浆pH在8~9,得到粗选精矿和粗选尾矿;(4)将步骤(3)中粗选尾矿加入抑制剂水玻璃进行扫选得尾矿;(5)将步骤(3)中粗选精矿加入抑制剂盐酸进行精选作业得萤石精矿。本发明在浮选前通过分级筛分预排除碳酸钙,既能简化浮选生产流程,减少碳酸钙的在精矿中的富集,同时又增大浮选分离效率,降低生产成本。
本发明公开了一种治理含六价铬废水的方法,该方法包括以下步骤:将黄铁矿矿石粉碎,分选,过100-300目筛,得到黄铁矿矿石粉末;将改良剂聚羧酸加入到黄铁矿矿石粉末中,得到改良的黄铁矿矿石粉末;将所述改良的黄铁矿矿石粉末加入含六价铬的废水中,充分搅拌,反应时间10分钟-2小时,反应形成Cr2S3和Cr3S4硫化物难溶物;静置沉淀;回收沉淀物,处理的废水均能达到或低于规定的排放标准。本发明的方法设备简单、成本低、占地小,没有二次污染,除Cr6+率达98%以上,排出水的水质均达到或低于规定的排放标准,具有很大的经济效益和社会效益。
本发明涉及冶金领域中贵金属的提取与精炼,用锌和铝合金碎化物料、火法蒸馏锇、蒸残渣过氧化钠碱熔浸出并用乙醇从浸出液中沉钌;它降低碎化剂用量;锇蒸馏过程不消耗氧化试剂;锇、钌的分离效果好,碱熔后钌得到富集有利提取;其综合成本比其它方法低;适合于处理铱锇矿、锇铱矿、含钌铱等贵金属的王水不溶物及含锇钌铱的物料。
本发明涉及一种含有钒、钛、镍、铬、钴、锰等少量合金元素的低品位钒钛磁铁矿精矿中制取微合金铁粉的方法。其特征在于:利用低品位钒钛铁精矿或含钛、铁物料与还原剂和添加剂混合、压块、直接还原、粉碎、重磁选、脱水干燥及退火等工艺,获得微合金铁粉和富钛(钒)料。与已有的制微合金铁粉法相比,本工艺流程简单、操作容易且生产成本低,可得性能稳定的优质微合金铁粉。
本发明涉及一种石煤中钒的浸取方法,首先将石煤通过破碎‑加水磨矿的前处理工序制得石煤矿浆;再用低浓度盐酸为浸出剂优先浸出其中的钾、钙、镁、铝等杂质,获得一段精矿和一段浸液;接着将一段精矿用调整剂、抑制剂、捕收剂进行浮选,得到燃料炭和钒精矿;继而将钒精矿脱水、烘干、磨粉,制成精矿干粉;再以硫酸为黏合剂,将精矿干粉成型并于空气中熟化;然后将熟化后的球团在200~330℃条件下进行盐化,将其中的钒转变为可溶性钒硫酸盐,得到盐化球团;最后将盐化球团用水浸出,获得二段浸液和浸出渣。钒的浸出率可以达到90%~96%,产业化应用前景好。
本发明公开了一种含钒石煤微波辐照—酸浸提钒工艺,将石煤矿破碎、 磨矿致其粒度小于0.15mm,按液固比1~2∶1加入硫酸溶液制备成矿浆,硫 酸用量为矿石质量的15%~25%,将该矿浆搅拌混匀后置于工业微波炉中,开 启微波炉对矿浆进行微波辐照,控制矿浆温度60℃~100℃,微波辐照0.5~1.0h 即为浸出完成;完成浸出后,关闭工业微波炉,将矿浆从微波炉中取出,加 入水使液固比为2~3∶1,室温下搅拌5min~10min后,经液固分离得到含钒 浸出液;浸出液用铁粉还原三价铁离子,用石灰和氨水将pH值调整到2.8~3.0 后,经溶剂萃取、氧化、加入氨水,得到多钒酸铵沉淀,多钒酸铵经煅烧制 备粉状五氧化二钒产品。本发明具有如下的有益效果:1.与同样酸耗量的传 统湿法浸出工艺相比,V2O5浸出率有明显提高;2.浸出时间短,可以节约能 耗;3.采用微波辐照对矿浆进行加热,取代传统的蒸汽加热方式,可以避免 大气污染。
本发明涉及一种从高钙含钒硅质页岩中提取钒的方法,属于硅质页岩钒矿选矿技术领域。本发明将矿石破碎至3mm以下,通过分级处理后,按先选钙再选钒的操作方式,对高钙含钒硅质页岩进行处理,实现了钙和钒金属的富集与回收。本发明所得钙精矿中氧化钙的品位为为原矿中氧化钙品位的5-7.5倍;所得钒精矿中五氧化二钒的品位为原矿中五氧化二钒的品位的1.8-2.4倍;所得尾矿占原矿总质量的60-65%。本发明钙的总回收率为70-82%,钒的总回收率大于等于73%。本发明操作简单,实用性强,便于工业化应用。
本发明公开了一种提高金红石浮选回收率的方法,该方法是将金红石原矿破碎、磨矿后,调浆,得到矿浆;所述矿浆先通过重选脱除矿泥,再以H2SO4为pH调整剂、以乙二胺四乙酸为离子络合剂、以Al2(SO4)3为金红石活化剂、以氟硅酸钠为脉石矿物抑制剂、以苯乙烯膦酸和正辛醇为复合捕收剂,进行浮选分离,得到金红石粗精矿,该方法既能保证金红石的较高浮选回收率和品位,又能降低浮选过程中的药剂成本,解决了低品位原生金红石矿浮选回收率低的难题。
本发明公开了一种锂云母脱氟和有价金属浸出的方法,包括以下步骤:1)将锂云母破碎、磨细,得矿粉;所述矿粉中,粒径<0.074mm矿粉质量占矿粉总质量的70%以上;2)在所述矿粉中加入浓硫酸,混合均匀,浓硫酸与矿粉的质量比为0.8~1 : 1;再加入水,水与矿粉质量比为0.08~0.1 : 1,混合均匀,得到混合矿;将所述混合矿进行保温堆存20~30h,实现脱氟,得到熟化矿;3)在所述熟化矿中加水浸出,水与熟化矿质量比为1.0~2.5 : 1,在温度为90~100℃条件下浸出2~4h,矿浆过滤,得到浸出渣和浸出液。本发明利用自热堆存熟化脱氟,简化工艺流程,大幅降低生产成本,减少设备投资;采用熟化脱氟?水浸工艺,提高了脱氟率和有价金属浸出率,氟脱除率大于95%,锂、钾、铷、铯的浸出率大于90%。
本发明公开了一种深海掘齿破岩机器人,包括底盘、滑台、移动机构、掘齿碎矿头及电机Ⅰ;掘齿碎矿头包括连接座、电机座及多个支撑轴,多个支撑轴分别与连接座连接,多个支撑轴位于同一平面内,每个支撑轴上通过轴承安装有一个轴套,连接座与电机Ⅰ的输出轴连接;电机座包括轴承座及安装在轴承座上的多个电机安装板,每个电机安装板上设有一电机Ⅱ,电机Ⅱ的输出轴与相对应的轴套连接,两滑台相对的侧面上分别设有滑槽;电机底座的两侧面上分别设有滑块,滑块插装在相对应的滑槽内;两滑台和电机底座与升降机构连接。本发明结构简单,运行可靠;而且本发明采用电机带动掘齿碎矿头转动,实现对深海海底的矿石粉碎,粉碎效率高。
一种利用脉冲功率技术开采海底富钴结壳的装备,包括悬浮舱、脉冲功率电源、破碎头、机械手以及集矿管道,所述破碎头与悬浮舱通过所述机械手连接,所述破碎头一侧设有脉冲电极,另一侧安装有集矿管道,所述脉冲功率电源放置在所述悬浮舱中。本发明结构合理、操作方便、开采效率高,呈正方形交叉排列的正、负电极,脉冲作用后,任意两个异性电极之间形成强电场并破碎富钴结壳;正、负电极可沿破碎头轴向移动,更好的适应海底复杂的矿山地形;悬浮舱使整个设备悬浮在深海海底,便于在开采过程中移动,破碎头与悬浮舱通过机械手连接,可使破碎头多自由度移动,使其进一步适应海底复杂的矿山地形,进一步提高富钴结壳的开采效率。适于工业化应用。
本发明公开了一种海底多金属硫化物采集方法,该方法采用切削头对多金属硫化物矿体进行一次破碎,破碎后的多金属硫化物颗粒在螺旋排料槽的牵引下自动向后排料,有助于实现多金属硫化物矿体的连续切削;切削头外面是圆筒形密封罩,避免了一次破碎后的多金属硫化物颗粒飞溅到海水中,避免采矿过程对海底环境造成污染;密封罩的下端设计有卸料口、破碎机和料仓,用于实现多金属硫化物颗粒的二次破碎,以形成直径更小的颗粒便于多金属硫化物颗粒的后续输送。本发明不仅能实现海底多金属硫化物矿体的连续切削,避免切削后的多金属硫化物颗粒飞溅到海水中,避免对海底环境造成污染,而且还可以将多金属硫化物颗粒进行二次破碎,以便于后续的输送。
一种环保植物基质的制备方法,包括以下步骤:(1)收集枯枝、落叶,分拣,破碎,粉碎,通过直径为0.6-0.8㎝的筛网;(2)加入复合肥、干鸡粪或干牛粪、过磷酸钙;(3)加入复合菌种;(4)放入发酵池、加水;(5)一次发酵;(6)第二次发酵;(7)干燥,包装。本发明在物料发酵前加入复合肥及其他矿物质、复合菌种,通过有益微生物酶的作用,能使难以溶解、难以被植物吸收的养分变成易溶解、易吸收的矿物质;在高温发酵阶段通过简易的通风装置使降温效果更好,能平均缩短发酵周期5-7天,使综合成本下降35-40%;本发明所得基质适用于蔬菜、水果、花卉栽培,苗木移植,屋顶绿化,矿山修复,高速公路边坡生态修复等领域。
中冶有色为您提供最新的湖南有色金属矿山技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!