一种对抗场景下的对手模型构建方法及存储介质,该方法包括将整体环境模型区分为对手智能体状态表示模型和对手智能体状态转移模型:其中对手智能体状态表示模型利用编码器构造,将高维空间中的训练数据映射到低维空间,保持原始数据网络结构的低维节点的抽象压缩表示,使得较大相似度的节点具有类似的向量表示;对手智能体状态预测模型采用解码器结合深度强化学习网络构造,在低维潜在空间生成未来状态的预测表示;利用对手智能体状态类数据和动作类数据对模型进行学习训练,当达到训练目标或者收敛后,利用变分自编码器的生成模块,在隐空间对下一时刻状态预测并输出。
声明:
“对抗场景下的对手模型构建方法及存储介质” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)