本发明提出了基于小波分解与迁移判别的基站用能异常监测方法及系统,包括:基于用能特征集获取的多维高低频特征,进行基站用能样本聚类及分类;以某一聚类用能历史样本数据集的高低频特征、档案特征数据、气象特征数据、节假日特征数据为输入,构建用能异常判别模型;对构建的用能异常判别模型进行最近邻类模型调参迁移学习,通过强化学习自适应调节模型参数,输出近邻聚类用能异常判别模型,依次近邻迁移学习调参,直至完成所有聚类类别用能异常判别模型的构建,形成具有泛化性的用能异常判别模型集;采用泛化性的用能异常判别模型集对基站用能进行实时监测。从而进一步提高用能异常判别的有效性和泛化性。
声明:
“基于小波分解与迁移判别的基站用能异常监测方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)