基于蒙特卡洛树搜索和强化学习的查询优化系统、方法及设备,属于计算机技术领域。为了解决现有的NEO查询优化方法存在兼容性弱和稳定性差的问题,本发明的系统采用与NEO查询优化模型相同的框架,其中价值模型单元:基于价值模型利用查询计划对应的特征预测查询计划的开销;价值模型为神经网络模型;价值模型的输入为一棵向量树,用于表示需要估计开销的查询计划,向量树的拓扑结构为二叉树结构,各节点编码按照树的层序遍历顺序依次拼接;节点的节点特征由节点信息的编码组成;查询计划搜索单元采用蒙特卡洛树搜索方法,根据查询计划‑>时间开销的预测做查询计划搜索,从搜索空间中生成一个执行计划。主要用于计算机中的查询优化。
声明:
“基于蒙特卡洛树搜索和强化学习的查询优化系统、方法及设备” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)