本发明公开了一种基于深度强化学习的智慧家庭能量管理方法及系统,方法的设计步骤如下:将在无建筑热动力学模型和维持室内温度在舒适范围的情况下最小化智慧家庭能量成本这一能量管理问题建模为马尔可夫决策过程并设计相应的环境状态、行为、奖励函数;利用深度确定性策略梯度算法训练出不同环境状态下能量存储系统或/和可控负载的最优行为,进而最大化奖励函数;将训练好的深度神经网络参数定期拷贝至智慧家庭能量管理系统本地的深度神经网络,用于实际性能测试。本发明提出的方法无需知晓任何不确定性系统参数的先验信息和建筑热动力学模型,且采用本地测试与云端训练相结合的在线学习模式来应对环境变化可能带来的性能降级问题。
声明:
“基于深度强化学习的智慧家庭能量管理方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)