本发明公开了一种基于概率转移深度强化学习的无线物联网资源分配方法,该方法将决策agent分布式地放在每一个边缘服务器中,这样每个agent仅需要对其所服务的用户进行决策即可,极大程度地减小了决策变量空间,还降低了决策时延,同时提出一种基于分布式部分可观测马尔科夫决策过程的服务迁移模型,克服了因为每个agent所能观测的状态信息有限,使得决策不能达到最优解的问题。
声明:
“基于概率转移深度强化学习的无线物联网资源分配方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)