本发明提供了一种基于强化学习的无人机空战机动决策方法,首先创建飞机平台的运动模型;然后分析影响空战态势的各主要因素,在运动模型和空战态势因素分析的基础上,设计空战机动决策的动态模糊Q学习模型,确定强化学习的各要素和算法流程;对空战机动决策的状态空间进行模糊化作为强化学习的状态输入;选取典型空战动作作为强化学习基本行动,通过各模糊规则的触发强度加权求和实现连续行动空间的覆盖;在构建的空战优势函数为基础通过设置权重和叠加奖惩值的方法设置了强化学习的回报值。本发明可有效提高无人机进行空战机动自主决策的能力,具有较高的鲁棒性和自主寻优性,在不断的仿真和学习中无人机所做的决策水平不断提高。
声明:
“基于强化学习的无人机空战机动决策方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)