本发明提供一种基于深度强化学习的动态AUV追踪路径规划方法,通过引入深度强化学习算法,运用航路模型来处理AUV的路径追踪问题。首先对目标和AUV状态分析,判断并选择采用哪种航路进行追踪,建立三种航路模型,用训练好的模型对AUV下一状态进行预测。采用纯方位最小二乘估计法对检测到的目标信号进行运动要素解算,获得目标信息。将目标和AUV运动情况作为状态输入,AUV下一状态的动作和航向作为输出,建立状态——动作映射策略。根据任务要求,选择奖赏函数,AUV每段时间所采取的决策都会获得相应评价。本发明结合深度学习和强化学习的优点,将深度强化学习算法用在AUV路径追踪上,实现了对动态AUV的追踪路径规划。
声明:
“基于深度强化学习的动态AUV追踪路径规划方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)