本发明公开了一种基于时频分析和径向神经网络进行跳频信号频段预测的方法,包括如下步骤:一、采用时频分析得到跳频信号的频率以及跳频周期;二、采用RBF神经网络对跳频信号的频段进行预测,选取高斯函数作为RBF神经网络的径向基函数;通过上述优化方案可通过优化学习训练得出RBF神经网络中的中心、宽度及权值,在实际测试数据的时候可将得出的数据继续作为样本输入到网络结构当中,重复上述步骤,这样当测试的数据越多网络的结构更加精确,测量的结果也更加精确。
声明:
“基于时频分析和径向神经网络进行跳频信号频段预测的方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)