本发明提出一种基于动态深度置信网络的固体废弃物智能处理方法,属于深度学习、固体废弃物智能处理领域。该方法首先提出一种使用动态增减枝算法的DDBN,使DDBN在训练过程中根据当前训练情况增加隐藏层神经元和隐藏层,以及移除冗余神经元,有效的优化DDBN的网络结构。然后,利用DDBN能有效提取原始数据主要特征的优势,使用DDBN对固体废弃物随机、离散、非线性的特征向量进行有效的状态描述,使时间序列的状态特征更加易于鉴别,并确保不丢失原始数据的主要信息。同时,根据提取到的固体废弃物的状态描述,利用DDBN预测适合其状态的优化燃烧行为,减少了盲目燃烧行为对资源的浪费,实现对固体废弃物的智能处理。
声明:
“基于动态深度置信网络的固体废弃物智能处理方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)