一种原位自生氧化铝‑氮化铝协同石墨烯增强铝基复合材料的制备方法,涉及一种石墨烯增强铝基复合材料的制备方法。目的是解决现有方法制备的石墨烯增强铝基复合材料存在大量脆性相的问题。方法:将石墨烯和铝金属粉末混合球磨,分散到乙醇水溶液中,添加分散剂得到石墨烯‑铝混合粉末,冷压得到石墨烯/铝预制体;氮气和氧气的混合气体条件下进行浸渗得到复合材料铸锭,最后进行大塑性变形处理和成分均匀化处理在烧结过程中引入氧气‑氮气混合气体并扩散进入石墨烯‑铝界面层间形成氧化铝和氮化铝的混合薄层薄,保证了界面结合,避免了界面有害产物的生成。本发明适用于制备铝基复合材料。
一种金属单原子负载双掺杂孔隙可控MOF衍生石墨烯/硫复合材料的制备方法及其应用,本发明涉及金属单原子碳基复合材料的制备方法和应用领域。本发明要解决严重多硫化锂穿梭效应等导致电池容量迅速降低及多孔金属氧化物制备困难耗能大、材料构成复杂且原子利用率低的问题。方法:先制备MOF前驱体;再制备孔隙可控的金属单原子/石墨烯复合材料;然后制备氮、氧双掺杂的复合石墨烯基材料,负载硫。该复合材料作为正极材料用于制备锂硫电池。采用金属单原子与杂原子协同作用于孔隙可调控的MOF衍生石墨烯作为S载体。成本低、工艺简单、能耗低、环境友好,能实现规模化生产。本发明制备的复合材料作为正极材料用于锂硫电池领域。
表面具有TiAl3保护层的网状结构TiBw/Ti复合材料及其制备方法。它涉及一种具有保护层的网状结构Ti基复合材料及其制备方法。本发明解决了目前网状结构TiBw/Ti复合材高温抗氧化与抗烧蚀性差;以及传统钛合金表面制备TiAl3镀层工艺复杂要求苛刻,对设备要求较高,镀层与固相结合力弱,制备周期长,孔洞较多、不致密,TiAl3镀层受热后总是存在较多的裂纹而成为氧的扩散通道导致大尺寸工件表面TiAl3涂层的脱落等问题。该复合材料以TiBw/Ti复合材料为基材,表面具有致密的TiAl3层。制备方法:一、抛光,酸性腐蚀;二、热浸铝;三、低温反应热处理;四、碱性处理。本发明拓宽了网状结构TiBw/Ti复合材料作为轻质、耐热、高强结构材料在高温环境下的应用范围。
一种制备金属基复合材料或者半固态浆料的装置及其使用方法,涉及一种制备复合材料或浆料的装置及其使用方法。本发明是要解决现有利用搅拌铸造法制备金属基复合材料或者半固态浆料的过程中存在的搅拌棒在搅拌过程中产生热腐蚀,导致搅拌棒的使用寿命短,材料中引入杂质元素,对材料的纯度造成影响,且搅拌棒对制备大体积的复合材料困难的技术问题。本发明的装置由容器端盖、加热元件、熔炼容器、超声装置、热电偶、阀门开关、出料通道、旋转装置、装置支撑结构、材料收集容器、传动装置、装置外壳、侧壁筋、底部筋、马达和减速装置组成。本发明的装置应用于复合材料或浆料的制备领域。
一种陶瓷颗粒增强泡沫铝基复合材料的制备方法,它涉及一种泡沫铝基复合材料的制备方法。本发明解决了现有熔体发泡法采用的发泡剂TiH2价格昂贵、需要预处理、分解速率难控制,导致生产成本高、得到的泡沫铝基复合材料气孔分布不均匀的问题。本发明方法:首先将铝合金粉、陶瓷颗粒和CaCO3粉末混合装入石墨模具,然后放入真空热压烧结炉制备预制体,再对预制体进行正挤压后再加热发泡即可。本发明采用粉末冶金法利用CaCO3粉末作发泡剂,价格低、无需预处理,工艺简单,分解速率稳定,便于产业化生产,得到气孔分布均匀的复合材料,本发明复合材料的孔径为0.5~2mm,孔隙率为40%~82%,压缩屈服强度为36~70MPa。
一种提高碳纤维增强环氧树脂基复合材料的界面韧性的方法,涉及一种提高材料的界面韧性的方法。本发明是要解决碳纤维增强环氧树脂基复合材料的界面韧性差的技术问题。方法为:一、将热塑性树脂溶于有机溶剂中,再加入助剂,制得聚合物溶液;二、采用浸渍法将碳纤维增强环氧树脂基复合材料先通过装有聚合物溶液的溶液槽,再通过装有清洗液的清洗槽,然后干燥,即完成碳纤维增强环氧树脂基复合材料的所用的碳纤维的表面改性。本发明经过表面处理后的碳纤维增强环氧树脂基复合材料的界面韧性提高大于35%。本发明应用于材料的表面与界面改性领域。
一种纳米零价铁负载亲水性多孔生物炭复合材料的制备方法,它涉及一种亲水性多孔生物炭复合材料的制备方法。本发明的目的是要解决现有负载金属粒子的基体成本高,纳米零价铁不稳定易发生团聚,应用吸附移除重金属过程中性能较低的问题。方法:一、生物质热解熔盐活化;二、制备亲水性多孔生物炭材料;三、负载纳米零价铁,得到纳米零价铁负载亲水性多孔生物炭复合材料。本发明制备的纳米零价铁负载亲水性多孔生物炭复合材料的比表面积能够达到603.4m2·g‑1。由于玉米秸秆是成本低廉、来源广泛的农业废弃物,热解其作为基体材料,降低了合成工艺的成本。本发明制备的纳米零价铁负载亲水性多孔生物炭复合材料用于环境污染物修复领域。
本发明提供了一种用于发泡的聚丙烯复合材料及其制备方法,首先将纳米蒙脱土和活化剂混合,其中活化剂包括乙烯基胺和钛酸酯偶联剂;再将所得到的活化蒙脱土与聚丙烯原料树脂进行190~230℃的熔融混炼,得到用于发泡的聚丙烯复合材料。实施例的结果表明,本发明提供的发泡用聚丙烯复合材料的热变形温度相较原料聚丙烯可以提高4℃~11℃,弯曲模量提高200~600MPa采用上述复合材料制备发泡珠粒制得的发泡制件,可明显解决刚性不足、使用温度偏低的问题。本发明还提供了一种采用上述复合材料制备发泡珠粒的方法。
一种原位自生TiB晶须增强钛基复合材料的制备方法。本发明涉及一种钛基复合材料的制备方法,具体涉及一种原位自生TiB晶须增强钛基复合材料的制备方法。本发明是为了解决现有钛基复合材料制备成本高的问题。方法:将钛粉与TiB2粉末混合均匀,然后用铝箔将混合后的粉末包制成合金包,再将合金包、海绵钛和元素添加剂一起装入真空感应电炉的水冷铜坩埚中并使合金包被其他物料所包裹,然后通电进行熔炼得到熔炼液,再熔炼液浇注成型,凝固后得到原位自生TiB晶须增强钛基复合材料。
高性能石墨烯纳米片增强镁基复合材料的制备方法,本发明涉及一种石墨烯纳米片增强镁基复合材料的制备方法。本发明要解决石墨烯纳米片在基体金属中润湿性较差且分散不均匀的问题。本发明方法:一、将石墨烯纳米片和Zn粉混合球磨;二、复合粉末加入到Mg-Zn合金熔体中;三、超声处理;四、浇注并凝固。本发明制备复合材料的工艺简单、可行,制备的复合材料力学性能有大幅提高,石墨烯纳米片在基体金属中润湿性好且分散均匀。本发明用于高性能石墨烯纳米片增强镁基复合材料的制备。
一种压力浸渗制备高强塑性铍铝复合材料的方法,涉及一种铍铝复合材料的制备方法。目的是解决现有的精密铸造方法制备铍铝复合材料存在的成分偏析、晶粒粗大的问题,以及粉末冶金方法制备铍铝复合材料存在的空隙率高、铍粉缺陷不能修复、成本高等问题。方法:铍粉无尘处理,预制体冷压成型,铝合金熔化和预制体预热,压力浸渗。本发明制备的材料致密度高和界面结合良好,力学性能如抗拉强度和塑性提高,并且成本低,工艺难度低。本发明适用于制备铍铝复合材料。
本发明公开了一种高温复合材料铝基加热器,属于电加热器件技术领域,包括高温复合材料铝基加热器,所述高温复合材料铝基加热器包括铝合金基板,所述铝合金基板上印刷有内绝缘涂层,所述内绝缘涂层远离铝合金基板的壁面印刷有电阻涂层;本发明还公开了一种高温复合材料铝基加热器的制作工艺;本发明由内绝缘涂层、电阻涂层、导体涂层和外绝缘涂层制成的复合材料加热器具有可长期工作温度大于200度,绝缘涂层的击穿电压大于1500VAC,电阻涂层的发热功率大于20W/cm2的功能,同时由于是铝基加热器,因此基体具有热容低、导热优良、热转化效率优于钢板加热器、更优于传统的电阻丝加热器和陶瓷加热器的功能。
一种SiC颗粒增强AZ91D镁基复合材料管材的挤压方法,本发明涉及金属基复合材料加工技术领域。本发明要解决SiC颗粒增强镁基复合材料在挤压中容易出现开裂的技术问题。方法:一、将SiC/AZ91D镁基铸锭加热处理;二、车削;三、采用包镁挤压的方式对SiC/AZ91D镁基环坯进行挤压;四、固溶,时效。本方法采用包镁挤压的方式对SiC/AZ91D镁基锭坯进行挤压,在包镁挤压的过程中SiC/AZ91D镁基锭坯没有出现开裂的现象,得到的一种SiC颗粒增强AZ91D镁基复合材料管材,具有密度低、比强度和比刚度高、物理性能上的各向同性、阻尼减震性好、电磁屏蔽效果佳等特点。本发明方法用于获得SiC颗粒增强AZ91D镁基复合材料管材。
一种双模结构石墨烯增强铝基复合材料的制备方法,涉及一种铝基复合材料的制备方法。目的是解决石墨烯增强铝基复合材料制备时石墨烯容易团聚、以及制备的复合材料存在强度‑韧性倒置的问题。方法:向氧化石墨烯分散液中加入抗坏血酸溶液得到氧化石墨烯胶体,进行真空冻干得到三维石墨烯骨架,将三维石墨烯骨架和铝金属粉末混合后进行球磨得到混合粉末,然后依次进行压力浸渗制备铸锭、热变形处理和热处理。本发明制备的三维石墨烯骨架结构可以避免团聚现象,通过粗晶与细晶混配的“双模结构”,在提升材料强度的同时,也能保证材料的韧性。本发明适用于制备石墨烯增强铝基复合材料。
一种SiO2气凝胶/多孔Si3N4复合材料的制备方法,本发明涉及复合材料的制备方法。本发明要解决多孔Si3N4微米级孔隙难以用于隔热领域和纯SiO2气凝胶强度太低难以直接应用的问题。方法:一、制备浆料;二、制备多孔陶瓷生坯;三、制备多孔Si3N4;四、制备SiO2溶胶;五、得到SiO2气凝胶/多孔Si3N4复合材料。本发明制备的复合材料抗压强度为5~50MPa,常温下的导热系数为0.03~0.08w/(m·K),介电常数1.40~1.80,介电损耗正切角0.1~3×10-2,密度0.38~0.8g/cm3,平均孔径8~30nm。本发明用于制备SiO2气凝胶/多孔Si3N4复合材料。
TiC和TiB混杂增强Ti-Al-Sn-Zr-Mo-Si基复合材料板材的制备方法,它涉及钛基复合材料板材的制备方法,本发明解决现有的TiC颗粒增强Ti-Al-Sn-Zr-Mo-Si基复合材料板材的拉伸性能在650℃以上急剧下降的问题。本方法:将按复合材料板材中TiC、TiB和Ti-Al-Sn-Zr-Mo-Si钛合金的体积百分比计算所需要的钛粉、二硼化钛、石墨粉末及其它材料,然后先将钛粉、二硼化钛和石墨粉末制成预制块,再将其与其它材料一同熔炼,得到铸锭,再经锻造、轧制和热处理之后,得到复合材料板材,材料在650℃时拉伸强度为810~890MPa;可用于航空航天领域。
一种用于测量导电复合材料电阻的装置,它涉及测量导电复合材料电阻的装置。它解决了现有电极制作复杂、成本高、耐久性差、与复合材料的结合能力较差;柱状电极测试结果精度较差,网状电极和片状电极对复合材料本体的力学性能影响大的问题。本发明的多个电极(2)呈环状,相互平行设置,相邻两金属电极(2)之间填充导电复合材料(1),电压表(3)连接在中间两个电极(2)之间,电流表连接在两个外侧的电极(2)之间。本发明具有耐腐蚀性、使用寿命长、结构简单、价格低廉、制造工艺简单及对被测对象性能影响小以及测试精度高的优点。
本发明提出了一种弯曲复合材料型材拉挤设备,属于复合材料生产技术领域。解决了不能够生产具有大曲率、曲率半径精度高的复合材料弯曲型材的问题。它包括可动成型装置、机架、驱动装置、型材和夹持装置,所述可动成型装置包括轨道安装板、弧形轨道、模具承托装置和成型模具,所述机架的两端分别设有一个轨道安装板,所述轨道安装板上设有弧形轨道,所述弧形轨道的两端分别设有一个滑块,所述模具承托装置设有两个,所述模具承托装置的两端分别固定连接一个滑块。它主要用于生产具有大曲率、曲率半径精度高的复合材料弯曲型材且可以生产曲率半径可调、尺寸精度较高的弯曲型材。
一种浸渗装置和高效制备金刚石粉末增强金属基复合材料的方法,涉及一种浸渗装置和制备金刚石粉末增强金属基复合材料的方法。目的是解决采用气压浸渗法制备金刚石粉末增强的金属基复合材料存在高成本和效率低的问题。本发明浸渗装置由熔体部、浸渗部和升液管构成;升液管设置在浸渗部和熔体部之间。方法:在模具内灌装金刚石粉末,模具置于浸渗室内;将金属基体置于熔体部内部的坩埚中;熔体部和浸渗部抽真空并分别升温,进行气压浸渗,将浸渗部管移走,更换新的浸渗部。本发明能够实现连续作业,提高了生产效率,降低了成本。浸渗部和熔体部独立进行加热与冷却减少了能量消耗。本发明适用于制备金刚石粉末增强金属基复合材料。
本发明提供一种基于冷冻流延制备功能梯度陶瓷/树脂复合材料的方法,将不同比例陶瓷粉体与去离子水混合,依次加入分散剂、粘结剂、增塑剂和消泡剂,得到一系列固含量不同的流延浆料,脱泡,并对其中最低或最高固相含量的浆料流延成型后进行冷冻处理,至流延浆料完全凝固;以凝固后的流延浆料为基底,对其它成分浆料按照固含量的升序或降序依次重复上述步骤,获得冷冻坯体,冷冻干燥、排胶、烧结后,得到多孔陶瓷预制体;将树脂和多孔陶瓷预制体置于真空干燥箱中进行树脂填充,并加热固化后随炉冷却,脱模,除去多余树脂,得到具有功能梯度的陶瓷/树脂复合材料,本发明可精确地实现复合材料成分、微观组织结构及性能的梯度控制,可广泛应用于功能梯度复合材料的制备。
一种大尺寸潜水器复合材料承载壳体制造工艺,涉及潜水器复合材料承载壳体制造技术领域。本发明的目的是要解决现有的潜水器承载壳体重量大、流线形曲面精度不高,整体承载能力差,材料耐腐蚀性和绝缘性差以及使用寿命短的问题。方法:先利用外壳的模具作为定位的基准,同时利用定位工装将各结构件调整于设计的相对空间位置上,进行固定;然后将结构粘接胶注射到外壳与结构件的间隙的中心位置处;再依次铺放补强结构层和补强表面层,并抽真空加压直至固化,固化后去掉模具,得到一种大尺寸潜水器复合材料承载壳体。本发明可获得一种大尺寸潜水器复合材料承载壳体制造工艺。
本发明公开了一种横向可调的复合材料构件钻模板,由钻模板(1)、插销(2)、定位销(3)、钻套(4)、复合材料构件(5)、钻孔衬套(6)、两个销钉衬套(7)组成。通过本发明的横向可调的复合材料构件钻模板,达到钻制孔的目的,并且实现了复合材料构件钻模板互换性,致使模具返修快捷、方便。满足复材生产车间各个型号机型需求,降低了工人劳动强度,提高了生产效率。
一种聚苯乙烯/石墨烯纳米复合材料的制备方法,本发明属于石墨烯改性领域,它为了解决现有制备聚合物/石墨烯纳米复合材料的方法中容易残留溶剂,石墨烯纳米片在原料单体中分散不均的问题。制备方法:一、将石墨烯纳米片粉体、St和分散助剂混合,超声分散均匀,得到石墨烯纳米片分散液;二、将石墨烯纳米片分散液转移至反应瓶中,然后再加入引发剂引发St发生原位聚合制备反应液;三、将反应液注入玻璃反应器中,静置排出气泡,硬化后得到PS/石墨烯纳米复合材料。本发明实现了石墨烯纳米片在PS基体中的均匀稳定分散,以DMA为分散助剂不存在残留溶剂,提高PS/石墨烯纳米复合材料的玻璃化转变温度和电导率。
本发明是一种镁基石墨烯复合材料的制备方法,属于镁基复合材料技术领域。首先将石墨烯粉末溶于适量无水乙醇溶液中,制得石墨烯超声分散液;将金属镁粉溶于无水乙醇,并超声处理和机械搅拌混合得到石墨烯/镁粉混合液;通过过滤后真空干燥,制得镁基石墨烯复合粉末;将复合粉末进行包套热挤压,制得镁基石墨烯固结预制坯;将去除包套后的固结预制坯加入到熔融金属液,通过螺旋磁场搅拌浇铸凝固,最终制备得到镁基石墨烯复合材料。本发明采用简单易实现的制备工艺,生产成本低、材料的制备范围广、安全环保,具有广泛的应用推广前景,适用于制备新型高性能的镁基石墨烯复合材料。
高温成型的木塑复合材料及其制备方法,本发明属于木塑复合材料及其制备方法的技术领域。本发明的目的是为了解决木塑复合材料难以实现高温制备的问题。本发明的木塑复合材料包括改性植物材料、通用塑料、偶联剂或界面相容剂、润滑剂、热稳定剂和矿物质填料;所述改性植物材料为经改性剂改性的植物材料。其制备方法为:一、利用改性剂将植物材料进行改性处理,二、将改性的植物材料与热塑性塑料、偶联剂、润滑剂、热稳定剂和矿物质填料混合,三、将步骤二得到的混合物通过双螺杆熔融共混,四、将共混料加入挤出机中挤出成型、经注塑机注塑成型或经热压机热压成型;或将改性剂固体直接与其他固体进行上述二、三和四步骤的操作。
一种双尺寸碳化硅颗粒混杂增强镁基复合材料的制备方法,它涉及一种碳化硅颗粒增强镁基复合材料的制备方法。本发明的目的是要解决现有技术存在碳化硅颗粒和镁合金的相容性不好,导致碳化硅颗粒极易团聚的问题。方法:一、混合得到双尺寸碳化硅颗粒;二、先将双尺寸碳化硅颗粒放入半固态状态的镁基体里,经过搅拌、超声分散和压铸即得到双尺寸碳化硅颗粒混杂增强镁基复合材料。优点:一有效的解决碳化硅颗粒在基体里均匀分散困难的问题,充分发挥颗粒增强效果;二、力学性能显著的增加。本发明主要用于制备双尺寸碳化硅颗粒混杂增强镁基复合材料。
本发明提供了一种梯度合金复合材料及其制备方法,涉及复合材料制备技术领域,所述制备方法包括:在惰性气氛下将碳化物陶瓷粉体和AgCu28共晶粉体球磨混合,得到多个具有不同成分含量的混合粉体;将所述混合粉体和钛合金粉末球磨混合并干燥后,得到多个具有不同成分含量的母粉,且多个所述母粉中钛合金粉末的含量呈梯度递增或递减;将所述多个具有不同成分含量的母粉按照预设顺序依次加入到模具中进行预压成型处理,得到预成型产物;将所述预成型产物在真空或者惰性气氛下进行放电等离子体烧结,得到具有层状结构的梯度合金复合材料。与现有技术比较,本发明能够获得致密度且力学性能优异的梯度合金复合材料。
本发明公开了一种复合材料耐高压储运瓶的瓶口阀座,包括金属内衬和包覆塑料,所述金属内衬的上部设有管状安装部,所述管状安装部内设螺纹,所述金属内衬通过所述螺纹与阀门连接,所述管状安装部设有向内延伸的金属密封承台,包覆所述金属密封承台的塑料承台的末端与所述螺纹相接触,所述塑料承台的顶端上设置限位槽,所述限位槽内设置密封垫,所述金属内衬的下部设有金属连接部,所述金属连接部的底部沿其径向延伸形成圆盘状衬肩,包覆在所述圆盘状衬肩外的塑料与复合材料耐高压储运瓶的内胆热熔连接。本发明提供的复合材料耐高压储运瓶的瓶口阀座,能够保障复合材料储运瓶在充装和使用高压介质过程中不发生泄漏,实现气瓶的瓶口密封。
一种航天器用聚合物基碳纤维复合材料空间热循环加速试验方法,涉及一种空间热循环加速试验方法。本发明为了解决现有针对航天器用聚合物基碳纤维复合材料的空间热循环试验的试验时间长的问题。方法:选择聚合物基碳纤维复合材料并测试微观结构;空间热循环条件确定,进行空间热循环试验并测定试验后材料中自由基的数量A和种类;确定地面加速热循环试验条件,进行地面加速热循环试验并测定试验后材料中自由基的数量B和种类;自由基的种类变化相同,数量满足∣A‑B∣/A≤5%,计算加速因子N=W1/W2或V2/V1。本发明能够缩短试验周期,降低试验成本。本发明适用于聚合物基碳纤维复合材料热循环加速试验。
本发明提供一种飞机用复合材料型面精准成型变形补偿方法,针对复合材料成型方法一般采用与复合材料制件数据模型相同的型面进行制造模具型面的热成型方法,而对于单件大件的飞机复合材料造成无法获得型面的变形规律,造成型面精度下降,本发明提供了一种飞机用复合材料型面精准成型变形补偿方法,以零件数据模型的型面为原始数据,根据数据模型几何特征制作试片和测量,建立试片变形量数据库,对原始截面曲线进行修正和补偿得到修正后的截面曲线,再用三维CATIA软件获得修正后的成型表面,用修正后的成型表面作为制造模具的成型面,再制作复合材料产品,这样可以大幅度提高复合材料制件的精度,提高复合材料型面的质量,并降低生产成本。
中冶有色为您提供最新的黑龙江有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!