本发明属于建筑材料和环保领域,公开了一种钾长石尾矿免烧砖及其制备方法。该免烧砖的组分及其含量为:钾长石尾矿85-90%,化学活化剂0.4-1%,水玻璃8-12%,碱性激活剂0.8-2%。免烧砖的制备方法为:(1)将尾矿中粒度为100目筛上的颗粒作为粗骨料,其余则粉碎至250目筛下作为细骨料;(2)粗骨料和细骨料按质量比混合后,然后加入化学活化剂,室温下放置24小时化学活化;再加入水玻璃和碱性激活剂搅拌混合均匀;(3)模压成型、室温或低温养护后,得到免烧砖成品。本发明实现了减少尾矿污染和尾矿再利用的目的,制备工艺简单,生产成本低,免烧砖的性能达到国家建材行业标准要求。
本发明属于资源再生利用技术领域,公开了一种低品位锰尾矿基胶凝材料的制备方法,包括:将低品位锰尾矿水洗、破碎以及球磨至矿粉;将所述矿粉与激发剂混合搅拌均匀;其中,所述激发剂包括:生石灰、水玻璃以及石膏;所述锰尾矿的成分组成中至少包括:二氧化硅、三氧化二铝以及氧化钙。本发明提供的低品位锰尾矿基胶凝材料的制备方法,以固体废弃物为主要原料,利用固体废弃物自身化学性质和激发剂的化学反应原理实现了低品位锰尾矿的资源化利用,具有无二次污染、成本低廉、制备方便的特点,能够大大提升锰尾矿的再生利用率。
本发明涉及一种发泡陶瓷保温板的制备方法。一种利用黄金尾矿制备发泡陶瓷保温板的方法,其特征在于它包括以下步骤:(1)原料破碎;(2)原料配比:按各原料所占重量百分数为:黄金尾矿45~80%,石英5~20%,高岭土5~20%,高温熔剂10~30%,称取金尾矿、石英、高岭土、高温熔剂;按碳化硅粉外加0.2~0.3wt%,称取碳化硅粉;(3)原料混合及坯料制备:混料,得到混合料;再加入水、粘结剂、分散剂,制得含水率在5~6%的坯料,备用;(4)坯体成型;(5)坯体干燥;(6)坯体烧成:经1220~1300℃烧成,烧制时间10~13h,制得发泡陶瓷保温板。该方法黄金尾矿利用率可达80wt%,制备的发泡陶瓷保温板具有孔径尺寸小、质量轻、强度高、闭气孔率高、保温隔热和防火性能好的优点。
本发明提出了含钒石煤矿钙法焙烧碱浸工艺,具体步骤为:含钒矿石破碎、湿式球磨,得细度为80—150目的矿粉;以矿粉重量为基准,加入12-16%的石灰,石灰与矿粉混合均匀,添加适量水,做成料球;料球放入焙烧炉,升温至1000-1050℃,保持2-3小时,然后等温度降至500℃以下出炉,得焙烧熟料;将焙烧熟料磨细至60目-100目;在常温条件下,加入质量百分比浓度为15-20%的碳酸氢铵溶液并搅拌,碳酸氢铵溶液的用量为焙烧熟料重量的4-5倍,浸出时间为90-120分钟,固液分离,得到含钒浸出液。本发明通过合理的焙烧温度,在常温下采用碳酸氢铵溶液作为浸出溶液,钒浸出率达到80%以上;本发明是用含钒石煤提钒的新方法法,其工艺简单、可靠,易于工业化生产,对环境污染小。
一种应用于钢铁行业原料矿检测领域的自动球团矿抗压强度试验装置,主要由试样进样器、压力传感器、液压装置、控制装置所组成。它是一种用于测量球团矿破碎压力的全自动高性能压力测试系统,替代了在常规测试中所有的繁琐人工操作,不仅能在线控制自动测试、获取和处理数据,同时对检测结果能进行实时采样和对系统工作能进行全自动控制,能显示每组球团数量、球团抗压强度值、压力平均值、球团直径、球团破碎行程、压力曲线等,并能通过计算机分析和打印相关实验数据。
本发明公开一种高强度重矿渣透水混凝土,包括普通硅酸盐水泥195~255份、粗骨料1300~1600份、矿粉75~105份、粉煤灰50~70份、外加剂8.5~25.5份、水90~120份。其中,粗骨料为普通碎石和强化重矿渣,强化重矿渣是使普通重矿渣表面覆盖一层稀的高强砂浆,完成“造壳”强化而成,高强砂浆是另外采用水、普通硅酸盐水泥、细砂和减水剂按比例制备的。通过用强化重矿渣代替现有技术中的普通重矿渣,并对相关重量比例反复试验验证,使制备的透水混凝土成品的28d抗压强度和透水性大大增强;经强化后的重矿渣,虽然成本有所增加,但是其应用范围广,优异性能将能带来更可观的收益。
本发明涉及一种生物质燃料及其制备方法和在铁矿烧结中的应用。首先在氮气气氛下将秸秆等生物质加热至400‑700℃使其碳化,接着将碳化生物质粉碎后与TFe含量为40%‑60%的冶金尘泥混合均匀,最后造粒得到生物质燃料,该生物质燃料可部分替代焦粉用于铁矿的烧结。本发明同时解决了冶金尘泥的处置利用和生物质燃烧反应性快导致的铁矿烧结矿产质量较差等问题,能够有效降低烧结过程的CO2排放,有利于实现钢铁工业的炭中和。
本发明涉及一种微波强化钒页岩磨矿与促进浸出的方法。其技术方案是:将钒页岩原矿破碎,筛分,得粒径<1.5mm和粒径为1.5~10.0mm的钒页岩原矿。先将粒径为1.5~10mm的钒页岩原矿置于“强化钒页岩磨矿与浸出效率的箱体式微波处理装置”的腔体内,启动顶板波源(8)和左侧板波源(2),辐照15~30s,停止6~10s;再启动底板波源(4)和右侧板波源(6),辐照15~30s,停止6~10s;重复辐照2~3次,得到微波处理的钒页岩。将微波处理的钒页岩置于水中水淬,得到水淬浆;然后将水淬浆与粒径<1.5mm的钒页岩原矿混合,磨矿,得到的磨矿产品进入后续浸出工序。本发明不仅处理周期短、能耗低和无碳排放,且钒页岩可磨性与浸出率强化效果好。
本发明涉及一种中低品位胶磷矿重浮联合分选方法。其技术方案是:将中低品位胶磷矿破碎,细磨至粒度为小于0.074mm占50~90wt%,调节矿浆,采用“一种硫酸渣分离提纯分选设备”分选,得到重选精矿和重选尾矿。若重选精矿中MgO品位小于1%,则重选精矿直接作为精矿,即为精矿Ⅰ′;若重选精矿中MgO品位大于1%,则将重选精矿调节为矿浆,进行反浮选碳酸盐,得到精矿Ⅰ″;精矿Ⅰ′和精矿Ⅰ″统称为精矿Ⅰ。将所述重选尾矿调节为矿浆,进行正浮选,得到的泡沫产品脱水后即为粗精矿。将所述粗精矿调节为矿浆,进行反浮选,得到精矿Ⅱ。将精矿Ⅰ和精矿Ⅱ合并,得到磷精矿产品。本发明具有分选效果好和入选粒度细的优点。
本发明涉及一种水硬性胶凝材料及其制备方法。 石膏尾矿胶凝材料,其特征在于它主要由石膏尾矿粉、矿渣粉、 粉煤灰、激发剂和早强剂原料混合而成,石膏尾矿粉、矿渣粉 和粉煤灰各原料所占质量百分比为:石膏尾矿粉50-70,矿渣 粉20-40,粉煤灰9-11;外加激发剂和早强剂,激发剂所占 石膏尾矿粉、矿渣粉和粉煤灰质量的0.8-1.2%,早强剂所占 石膏尾矿粉、矿渣粉和粉煤灰质量的1.3-1.7%;石膏尾矿粉 为将石膏尾矿破碎至粒径小于10mm,然后磨细至0.08mm方 孔筛筛余量为15%的细粉;矿渣粉为将水淬矿渣或磷渣烘干磨 细至比表面积大于4000cm2/g的 细粉。本发明具有成本低的特点;其制备方法简单。
本发明涉及一种利用离子液体型萃取剂从磷矿盐酸浸出液中萃取主要离子的方法。首先将磷矿石粉碎成规定粒度的矿粉,接着在矿柱或反应釜中利用盐酸溶浸矿粉得到浸出液,最后采用1‑烷基‑3‑甲基咪唑六氟磷酸盐等萃取其中的金属离子。经此处理后大大降低了浸出液中的金属盐含量,为后续有机溶剂萃取湿法磷酸进而制备工业级磷酸创造了有利条件。本发明通过萃取降低了浸出液中的金属盐浓度,间接降低了后续有机溶剂萃取法萃取相中的金属盐浓度,实现了辅助提高现有有机溶剂法净化湿法磷酸的效果。
本发明涉及道路建设领域,具体公开了一种矿粉改性的白水泥透水混凝土,该白水泥透水混凝土是采用原料经混合搅拌处理得到的;所述原料包括占原料整体质量百分数为71.79~78.63wt%的碎石粗骨料,16.13~21.54wt%的胶凝材料,胶凝材料是白水泥与矿粉按照质量比8:2~6:4混合得到,5.00~6.46wt%的水,0.18~0.28wt%的减水剂,水与胶凝材料两者的水胶比为0.29~0.31,减水剂与胶凝材料的质量比为(0.0095~0.0150):1;该矿粉改性的白水泥透水混凝土其设计孔隙率为15.0~20.0%。本发明通过对该混凝土关键的组分等进行改进,采用矿粉与白水泥一道作为胶凝材料,设计制造矿粉改性白水泥透水混凝土,改善了透水混凝土强度,同时白水泥的使用保证了透水混凝土的经济实用性。
本发明提供了一种金属矿石开采研磨分离方法,包括执行机构和分离机构,所述的执行机构安装在分离机构上,且所述的执行机构位于在分离机构的正上方;本发明解决了针对开采后铁矿石的研磨和分离,将矿石内部的金属成分与非金属成分进行区别,在实际的处理过程中需要对铁矿石进行碾压破碎,使其增大磁吸的接触面积,再通过磁选区分出金属成分与非金属成分,现有的磁选处理步骤只有单层磁吸,在实际的矿石筛选过程中容易对含有金属成分的铁矿石漏筛,且在吸附多个铁矿石后,磁吸装置吸附力度会有所下降,容易漏吸铁矿石,造成原材料矿石的浪费。
本发明具体涉及一种从含钒石煤中选矿预富集钒的方法。其技术方案是:先将含钒石煤原矿破碎至粒径小于25mm,再用棒磨机湿磨至50~90wt%为粒径小于0.074mm的矿浆,然后将湿磨后的矿浆调成浓度为10~40wt%的矿浆,送入粗选用摇床粗选,最后将粗选后的尾矿调成浓度为10~40wt%的尾矿浆,送入扫选用摇床扫选,扫选后的尾矿作为最终尾矿,粗选的精矿和扫选的精矿合并一起作为最终精矿。粗选用摇床和扫选用摇床的均采用“一种用于含钒石煤选矿预富集钒的摇床”。粗选用摇床的横向倾角为0.5 ~1.5o;扫选用摇床的横向倾角为0.9 ~2.0 o。本发明具有矿石适用性强、工艺流程简单、无药剂污染、精矿品位高、回收率高和能显著降低后续化学提钒成本的特点。
本发明公开了一种矿石分类装置,包括原料仓,所述原料仓用于盛放被上一工序破碎好的矿石原料;振动给料机,所述振动给料机设置在所述原料仓下方,用于将从所述原料仓内落下的矿石原料振动散开;排序机,所述排序机位于所述振动给料机下方,用于将从所述振动给料机落下的矿石原料一字排开;传输皮带,所述传输皮带位于所述排序机下方,用于将从所述排序机落下的排序好的矿石原料向前输送;缓冲杆位于传送皮带的末端,可以在矿石量较多时将部分矿石拦截;分拣仓,所述分拣仓包括矿仓和岩石仓,位于所述传输皮带末端下方;射线识别系统,包括识别射线发射机、控制器、电磁阀、空压机和高压风嘴。
本发明公开了一种铁矿粉生产制备用高效预热预还原装置,包括底板,所述底板的底部固定连接有支撑柱,所述底板的上表面固定连接有釜体,所述釜体的上表面固定连接有进料漏斗,所述釜体的内壁固定连接有支撑板,所述支撑板的上表面开设有圆锥孔。该铁矿粉生产制备用高效预热预还原装置,通过进料漏斗、支撑板和圆锥孔,便于使物料集中流到磨盘和过滤板之间,再使电动机启动带动传动杆和磨盘转动,磨碎过滤板表面上的不规则碎石,使从过滤板表面上掉落到过滤网上的铁矿粉二次过滤,不合格的通过第一提升机输送到釜体表面上的进料漏斗中,再次经过釜体内部加工,从而达到该铁矿粉生产制备具有返料加工的效果。
本发明公开了一种低品位细粒铌钽矿的综合回收工艺,包括以下步骤:1)将低品位细粒铌钽矿原矿破碎后,‑2mm的筛下物料作为铌钽矿原料;2)将铌钽矿原料进行磨矿‑水力分级‑摇床分选出云母,并得到铌钽矿粗精矿;3)将步骤2)得到的铌钽矿粗精矿和水力分级得到的溢流产物混匀,进行弱磁选去除铁杂质,再进行强磁选获得强磁精矿和强磁尾矿;4)将步骤3)得到的强磁精矿采用浮选得到最终的铌钽精矿,强磁尾矿通过浮选得到长石和石英,即完成低品位细粒铌钽矿的综合回收。该工艺简单便捷,实用性强,除了能得到较高品位的铌钽精矿外,而且能够分选出大量较为纯净的云母、石英和长石产品,有利于实现资源综合利用并提高整体的经济效益。
本发明公开了一种采用磷尾矿制备耐火材料的方法。包括以下步骤:将磷尾矿破碎至粒径小于10μm以下后与碳化硅在高能球磨机上球磨后煅烧得到混合物1;将混合物1、硅氧化物及粉煤灰在高能球磨机上球磨后煅烧得到耐火材料。本发明获得了体积密度高、常温抗压强度好的镁钙质耐火材料,具有制备工艺简单,易操作,主要以磷尾矿为主要原料,解决磷尾矿利用率低的问题,以及减少磷尾矿对环境带来的危害。
本发明提供了一种以钾长石矿为原料直接烧结制备微晶玻璃的方法,其特征在于:它包括以下步骤:(1)制备钾长石粉;(2)压制成型;(3)热处理:将坯体放入高温炉中升温至1150~1300°C,升温速率为2~5℃/分钟;保温2~6小时;再降温到500~700℃,降温速率为3℃/分钟;最后随炉冷却,得到微晶玻璃。本发明将钾长石原矿粉碎后直接烧结法制备微晶玻璃,无需提纯,无尾矿,提高了钾长石矿的利用率,以不同品位的钾长石矿制备得到不同性能的微晶玻璃,满足不同的使用要求;热处理温度低,能耗小,同时简化工艺,有利于连续化生产。
本发明提供了一种硫铁矿型石英岩制备光伏玻璃用低铁石英砂的方法及酸洗提纯装置,是将矿山上选好的含硫铁矿型石英岩矿石清洗后破碎、湿法制砂,将制好的砂浆经磁选后筛分,收集24~120目砂浆再进行精洗、重力分选、磁选后脱水,脱水后的砂子送入酸洗提纯装置,加入混合酸液进行循环酸洗,同时对混合酸液加热至75~90℃后,保温循环酸洗3~4小时,脱除酸液,砂子用清水洗涤至pH=7后脱水,即得低铁石英砂;本发明工艺先进、装置设计科学合理、操作方便、自动化程度高、生产量大、产品质量稳定、生产成本低,实现了低铁石英砂的规模化大生产,达到了科学、合理地开发和利用含硫铁矿型石英岩矿物资源来提升企业的经济效益和社会效益。
一种低品位大鳞片石墨矿综合利用方法,涉及石墨矿综合利用领域。该低品位大鳞片石墨矿综合利用方法是将大鳞片石墨原矿破碎、粗磨、分级,在磨矿过程中添加捕收剂煤油和起泡剂松醇油,并将分级的返砂进入洗砂流程得到粗砂产品,洗砂流程中的洗砂液则进入浮选流程参与浮选过程,浮选过程包括一次粗选、五次再磨六次精选、一次扫选和二次扫选过程。本申请提供的低品位大鳞片石墨矿综合利用方法能够有效地对大鳞片石墨矿进行预富集,增大磨机的处理量,减少选矿成本,将固定碳含量2~4%的低品位大鳞片石墨原矿提纯得到固定碳含量92~95%的石墨精矿,且石墨精矿回收率可达到90~95%,精矿中粒度+0.15mm含量达到20~30%。
本发明具体涉及一种微细粒级卧式磨矿设备。其技术方案是:该磨矿机由研磨室和传动机构组成;研磨室的筒体安装中心线为水平,筒体内的水平长度为筒体内圆直径的1.5~2.5倍,筒体的内表面均衬有耐磨材料,筒体内填充有研磨介质[18];与筒体中心线重合的主轴[6]上垂直地装有5~8个搅拌叶轮[8],筒体左端的正下方设置有排矿装置,筒体右端的正上方设置有给矿口[7];主轴[6]的左端装在轴瓦[13]中,轴瓦[13]固定在筒体的左端盖[12]中心处,主轴[6]的右端穿过轴承[2]经联轴节[1]与电机联接;副叶轮[5]安装在筒体右侧的主轴[6]上。本装置的矿浆在高速运动的研磨介质碰撞、研磨作用下被粉碎,具有启动简单、介质能量密度大和磨矿效率高的特点。
本发明涉及一种处理钒钛磁铁矿综合利用的工艺,其特征在于包括以下步骤:(1)钒钛磁铁矿原矿经破碎、抛尾、细磨、弱磁选、强磁选、摇床分选后得到钛精矿和高钒铁精矿;(2)高钒铁精粉配入粘结剂混匀造球、干燥后,与煤粉或焦粉混匀,经布料,在煤基竖炉内进行使V不被还原的控制性还原得到海绵铁,煤粉等还原剂用量占高钒铁精粉重量的30%~70%,还原温度850℃~1060℃,还原时间10‑18h,得到海绵铁;(3)得到的海绵铁在弱还原性气氛的中频/工频电炉中,于1050℃內加热0.5‑1.0h后,升温至1500℃以上熔分,钒进入渣中,得到高品级钒渣和高纯铁水。本发明实现钒钛磁铁矿多种有价元素的有效分离和高附加值利用。
本发明提供一种湿磨矿渣细化增强剂粉体混合物,总质量为100份,具备制备步骤如下:将20‑40份电石和10‑20份油脂按比例配置好,粉磨控制细度为200目95%过筛,记为组分A;将20‑45份石膏类原料和10‑25份甲酸钙按比例配置好,粉磨控制细度为1000目95%过筛,记为组分B;将组分A和组分B混合粉磨,出料即得湿磨矿渣细化增强剂。本发明制备的湿磨矿渣细化增强剂在湿磨粉磨中产生强电解液,使几十微米的矿粉进一步碎化,以降低粉磨能耗;油脂在此碱性环境下水解释放的高级脂肪酸和甘油可有效抑制二次水化反应,并降低粘度;石膏类原料和甲酸钙可缓解甘油带来的缓凝效应,并提高矿渣强度。
本发明公开了一种压滤尾矿辅助粉体材料及其混凝土制备方法,由如下重量份的组分组成:水泥180‑400重量份,掺合料0‑250重量份,压滤尾矿辅助粉体材料25‑190重量份,解聚分散剂0.3‑1.9重量份,机制砂600‑950重量份,碎石900‑1200重量份,水110‑185重量份,外加剂2‑10重量份。本发明将水洗法生产骨料过程中产生的压滤尾料应用于机制砂混凝土中,作为辅助胶凝材料和补充机制砂细微颗粒,有效解决了矿山压滤尾矿处置问题,而且产生了较高的经济效益。
本发明公开了一种挤出成型锶矿化滤芯及其制备方法,滤芯配方由以下材料按不同比例配置:活化沸石粉料20‑50份,活化锶矿石粉料5‑30份,活化麦饭石粉料10‑30份,活性炭粉料200‑300份,低分子聚乙烯胶粉20‑50份,以上配方配置的矿化滤芯在过纯水时可以稳定持久地释放锶元素。本发明还提供了此滤芯的制备方法,由以下步骤组成:用纯水清洗天然矿石;对天然矿石进行破碎和筛分处理得到矿石粉料;对矿石粉料进行活化处理,得到活化沸石粉料、活化锶矿石粉料和活化麦饭石粉料;将以上物料按比例混合,通过炭棒挤出机挤出成型,即可制得本发明所述的矿化滤芯。本发明所制得的的矿化滤芯矿化效果稳定,生产成本低,效率高。
本发明提出了绿松石矿石的优化处理方法,具体步骤为:(1)人工去除绿松石矿石上的杂质;(2)把绿松石矿石在95?110℃温度下烘烤;冷却到常温;(3)把绿松石矿石放入环氧树脂型宝石浸胶中浸泡2?4天;(4)把浸胶后的绿松石矿石拿出,用碎木屑均匀洒在的绿松石矿石表面,立即用塑料薄膜密封;(5)把塑料薄膜密封后的绿松石矿石在100?115℃温度下烘烤;冷却到常温,拆掉塑料薄膜,得到优化后的绿松石矿石。本发明在浸胶前对绿松石矿石烘烤,提高胶水吸附率;并且,在浸胶后提高烘烤温度,保证浸胶的固化效果更好,能长时间长后保证固化的胶不剥离,长时间保持绿松石矿石的色泽和形态,有利于绿松石矿石的后续加工。
本发明公开一种利用硫铁矿烧渣制备磷酸铁的方法,包括以下步骤:将硫铁矿烧渣清洗、干燥后粉碎,形成硫铁矿烧渣粉料;向硫铁矿烧渣粉料中加入硫酸溶液后搅拌,形成混合料;将混合料加热至80~120℃水热反应6~12h,然后使固液分离并收集反应液;向反应液中加入磷酸盐后搅拌,然后调节反应液的温度至60~90℃、pH值至1.8~2.0,继续搅拌后静置,获得生成有固体产物的混合物;对混合物进行纯化后分离出其中的固体产物,固体产物经过洗涤、干燥以及煅烧后,获得磷酸铁产品。本发明提供的利用硫铁矿烧渣制备磷酸铁的方法,工艺简单、条件温和,不仅能消除硫铁矿渣对环境的巨大危害,还能得到高附加值的磷酸铁,对于促进硫铁矿渣资源化利用有重要意义。
中冶有色为您提供最新的湖北有色金属矿山技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!