本发明提供一种柴油机Urea‑SCR系统氨喷射量和氨覆盖率同步优化方法,包括以下步骤:步骤1.建立系统三状态非线性模型:步骤1‑1.基于主要化学反应及速率方程建立系统三状态模型;步骤1‑2.将NOx和NH3浓度变化视作准稳态,仅氨覆盖率动态性作为唯一状态,建立一状态降阶模型;步骤2.在Matlab中采用遗传算法使催化器出口尾气中NOx和NH3浓度的预测值与实际测量数据误差最小,辨识得到模型参数;步骤3.将辨识出的模型参数用于NSGA‑II算法的优化过程,根据限值要求选择最佳的优化解,得到优化的尿素供给率和氨覆盖率、最大NOx转化效率、氨存储量;步骤4.进行仿真,建立发动机全工况优化MAP。
本发明的名称为一种中折射率高阿贝数的磷冕光学玻璃。属于光学玻璃技术领域。它主要是解决现有磷酸盐体系玻璃热稳定性差、生产难度增大的问题。它的主要特征是:以重量百分比含有60~83%Ba(PO3)2;3~15%Al(PO3)3;0.5~5%Al2O3;3~10%B2O3;2~10%La2O3;0~5%Gd2O3;0~5%Y2O3;2.5~10%∑(La2O3+Y2O3+Gd2O3);0~2%ZrO2;3~10%BaO;0~10%CaO;0~10%SrO;3~10%∑(CaO+SrO+BaO);0~0.5%Sb2O3。本发明具有折射率为1.59~1.62和阿贝数为63~69,转变温度低于610℃,比重为3.50~3.80g/cm3,且依据“GB/T17129-1997光学玻璃化学稳定性的测定方法”测定玻璃的Dw为1级,同时具有着色度小,稳定性好,工艺性能优,能适宜批量化生产的特点,主要用在镜头组中消除色差,达到校正色差的目的。
本发明涉及一种集成式化学实验室废水处理方法及装置,该装置由壳体和内置的曝气管、滤板、铁炭填料、挡流板、三相分离器、溢流堰构成,在废水处理装置的下端设置滤板,最下端壳体与滤板之间设置曝气管,铁炭填料充斥于滤板与挡流板的壳体内空间,挡流板上方的壳体空间设置三相分离器,三相分离器上端与溢流堰连接,废水处理装置的最下端与滤板之间的壳体侧壁,一侧设置进水口,另一侧设置放空口,在挡流板上方的壳体侧壁上设置有检查孔,溢流堰上设置出水口。本发明的集成式化学实验室废水处理装置能对较复杂的废水实现综合处理。
本发明提供了一种评估电芯压实体系的方法。所述方法包括以下步骤:(1)将不同压实密度的正极极片和不同压实密度的负极极片组装成电芯;(2)对步骤(1)所述电芯进行电化学阻抗测试,根据所述电化学阻抗测试的结果确定正极极片和负极极片的最佳压实体系。本发明提供的方法无需测试电芯的基本电性能,通过EIS测试,可以快速的评估电芯体系中的最佳压实搭配,为电芯生产设计选取压实密度提供指导方向。
本发明提供一种抗UV光学膜玻璃,该抗UV光学膜玻璃是由多层高折射材料H层与低折射材料L层交替层积在玻璃基板上形成的,玻璃基板上沉积有6层材料,从下往上依次为高折射材料H层,低折射材料L层,高折射材料H层,低折射材料L层,高折射材料H层,低折射材料L层,高折射材料H层。采用等离子体增强化学气相沉积技术在石英基片上制备高折射率材料,测试超声后样片的光谱,同浸泡前光谱相比,重合度非常好;测试百格,附着力仍然为5B。本发明是用气相沉积法将抗UV光学膜制备在玻璃上,附着力、耐候性、耐划性、光学性能、抗污性能均有优势。
本发明提供了一种高振实密度的钛酸钠微球及其在钠离子电池中的应用。具体是将一定量钛酸四正丁酯溶解在乙酸溶液中形成乳白色混浊液,经过水热处理后在空气中退火得到TiO2片球。为了得到高振实密度的Na2Ti3O7微球,我们将上述TiO2微球置于高浓度的NaOH溶液中水热反应后于500℃下退火得到高振实密度的Na2Ti3O7微球,通过振实密度测试仪测得其振实密度高达1 g cm‑3。以这种高振实密度的Na2Ti3O7微球作为钠离子电池的负极材料具有优异的电化学性能,在3 C倍率下依然具有高达85 mAh g‑1的比容量,经过20次循环后其容量保持率为84.1%。
本发明涉及一种颗粒集料表面能确定方法,其包括步骤,测量颗粒集料中的化学组分的含量;对颗粒集料表观特性的指标进行测试;利用颗粒集料中的化学组分及表观特性的指标构建表面能预测模型,以利用表面能预测模型计算颗粒集料表面能。本发明还提供一种存储介质及颗粒集料表面能确定系统,本发明提供的颗粒集料表面能确定方法、存储介质及系统可实现颗粒集料及颗粒集料—沥青组合的优选,合理利用有限的养护资金。
本发明属于药物化学合成技术领域,具体涉及具有抗菌活性的喹噁啉-N1, N4-二氧化物衍生物。本发明还包括该衍生物的制备及其抗菌活性测试。其中新合成的化合物是以N-氧化苯并呋咱为原料,与丙二腈在碱性条件下发生贝鲁特反应,得到3-氨基-2-氰基-喹噁啉-N1, N4-二氧化物之后再与合适的酰氯反应得到一系列具有2-氰基-3-酰胺基喹噁啉-N1, N4-二氧化物。体外抑菌活性测试结果显示:对人结核分支杆菌和牛结核分枝杆菌具有较好的抑菌活性;对金黄色葡萄球菌,肺炎链球菌,大肠杆菌和巴氏杆菌也具有抑菌活性。本发明还公开了作为靶标抗菌药物的化合物的结构式。
本发明提供一种三维存储器件的制造方法及其器件结构,在进行化学机械抛光操作以平坦化三维存储器件表面的步骤之前,无需沉积氮化硅阻挡层作为化学机械抛光终止信号的操作,可以通过将位于三维存储器件区和外围电路区上方的氧化物绝缘层的厚度设置为比所述三维存储器件的堆叠层的厚度更厚,并通过监测位于所述堆叠层的核心平台区上方的氧化物绝缘层的厚度来确定后续化学机械抛光的时间,从而省略了传统的通过沉积氮化硅阻挡层来作为化学机械抛光停止操作的步骤,并且减少了化学机械抛光工艺后残留的各种缺陷问题,降低了制造成本和时间,提高工艺的稳定性和产品良率。
本实用新型提供一种模拟自然条件下流域水环境微塑料老化装置,包括上端开口的环形水槽、盖设于环形水槽上端开口的活动式密闭盖、设于环形水槽的温度控制器、电磁流速仪和变频循环泵、微孔曝气单元、网状金属板、与环形水槽连通的化学氧化投加单元,所述环形水槽底部设有插槽,网状金属板呈竖直状态插接固定于插槽中,网状金属板上均匀布设有活性碳纤维,微孔曝气单元设于网状金属板一侧,化学氧化投加单元用于向环形水槽加入加速老化微塑料的化学物质,所述活动式密闭盖内布设有光源。本实用新型可进行单一因素对微塑料老化的测试,也可以同时引入多种试验因素对微塑料老化的综合模拟测试,操作便捷,可广泛应用于流域水环境微塑料老化模拟研究。
本实用新型公开了智能远程火灾预警灯及预警系统,所述灯罩固定安装在灯座上,在所述灯罩上分别开设有与烟雾传感器相对应的烟雾通过孔,和分别与温度传感器、天然气气体传感器、电化学气体传感器相对应的通孔,以及与警鸣器相对应的扬声孔和与摄像头相对应的镜头孔,所述灯泡、烟雾传感器、温度传感器、天然气气体传感器、电化学气体传感器、警鸣器和摄像头分别固定安装在灯座上,并分别位于灯罩内,所述温度传感器、天然气气体传感器和电化学气体传感器的探测端分别从灯罩的通孔穿出,本实用新型优点是:可对多种火灾信号进行全面监控,起到很好的监控效果,避免了因监测不及时而造成不必要的人身财产损失,有效保障了人身财产安全。
本实用新型公开了一种原子吸收光谱仪混合进样装置,包括进样壳体,进样壳体的内腔中部设置有预混合室,预混合室的一侧设置有呈V形夹角分布的试样溶液输入毛细管路和化学改进剂输入毛细管路,试样溶液输入毛细管路的内径大于化学改进剂输入毛细管路的内径,预混合室的另一侧设置有混合溶液输出毛细管路;试样溶液输入毛细管路、化学改进剂输入毛细管路和混合溶液输出毛细管路分别向进样壳体边缘延伸形成有试样溶液入口、化学改进剂入口和混合溶液出口,试样溶液入口、化学改进剂入口和混合溶液出口处分别设置有带中心通孔的螺塞,螺塞的中心通孔中插接有柔性毛细管。本实用新型提高了测量的灵敏度,减少化学改进剂的消耗;混合后溶液均匀、稳定。
本实用新型公开了一种应用于工程钻孔密闭分隔的栓塞装置。它包括橡胶外壳、金属内胆、电源、电缆、电源插头、放电装置、化学原料盒和磁铁;金属内胆外壁上有多处孔洞;橡胶外壳包裹在金属内胆外周、且位于孔洞外周,金属内胆内布置化学原料盒、放电装置;放电装置位于化学原料盒上方,电源插座安装在金属内胆的上端,电源插头、电源插座、放电装置依次连接;磁铁位于金属内胆上端;电缆一端与电源连接、另一端分别连接电源插头和磁铁。本实用新型具有实现高效、可靠地对钻孔进行水平向分割,达到分层观测地下水位等水文地质观测试验的优点。
本发明公开了一种提高树脂微球光谱编码准确性的方法,其步骤为:①通过量子化学密度泛函方法对树脂微球单体进行红外或喇曼特征振动频率计算。②将特征振动频率与校正因子相乘,使实验测得的光谱中至少有一个强峰与校正后的特征振动频率趋于一致;③在单体的光谱实验测量结果中挑选出与校正后的特征振动频率量化计算结果相重合或趋于重合的谱峰,得到该单体的可编码特征红外或喇曼振动频率;④在树脂微球聚合物的红外或喇曼光谱实验测量结果中,挑选出与单体的可编码特征红外或喇曼振动频率相重合或趋于重合的谱峰,作为可进行准确编码的谱峰。本发明可提高该树脂微球聚合物的红外光谱或喇曼光谱的编码准确性,实现微球的快速准确筛选识别。
本发明属于高性能闪烁体材料及高能射线探测领域,公开了一种化合物作为闪烁体材料的应用及其制备方法,该化合物满足化学通式AB2X3,其中,A代表一价碱金属阳离子,B代表一价过渡金属阳离子,X代表一价卤素阴离子。制备方法具体是以摩尔比满足1:2的AX和BX为原料,基于反溶剂析晶法、降温析晶法、熔盐混合法或提拉法制备得到化学通式满足AB2X3的化合物。本发明通过对化合物的组分进行调控,得到化学通式满足AB2X3的新型的闪烁体材料,该闪烁体材料具有无毒、稳定、制备方法简单、光产额高的特点。作为一种新型的闪烁体,本发明公开的材料在高能探测领域拥有巨大的潜力,展示出大规模工业化生产的应用前景。
配制固体化学产品以制备所要求量的具有所要求的化学产品浓度的使用溶液。在一些实例中,确定稀释剂的目标量和制备所要求的使用溶液所需的化学产品的目标量。稀释剂的目标量被分配到容器中。至少一些容器中的稀释剂被应用到固体化学产品中,从而产生一种最终的使用溶液,该溶液被引导回容器中。容器中的稀释剂被应用到化学产品中,直到容器中的使用溶液的量满足所要求的量。在一些实例中,通过重量测量稀释剂的目标量和化学产品的目标量。
本发明设计了一种评估燃料电池催化剂在额定电势下氧还原活性的方法,包括测量燃料电池在不同电势区间的电化学阻抗谱,得到阴极的电荷传输阻抗值。燃料电池的电化学阻抗谱可以在不同的电势下进行测试,可以采用恒电流模式或者恒电压模式。由燃料电池的电化学阻抗谱得到阴极电荷传输阻抗值,可以采用等效电路拟合方法得到,或者可以使用分频、编程的解析方法获得。与传统的催化剂表征方法相比,本发明使用电荷传输阻抗用作指示符,不仅在高电势0.9V下适用,并且能够评估催化剂在燃料电池实际工作电势下的活性,能够筛选出用于质子交换膜燃料电池膜电极用高活性催化剂。
本发明属于电池充电过程和工业电镀过程的数值模拟技术领域,公开了一种电镀电极演化仿真系统。通过非局部理论描述电镀过程中复杂的固液界面演化行为,建立基于近场动力学的反应扩散模型,将电镀过程视为与实际电化学机理相结合的反应项,结合电化学测试结果直接推导获得反应项与电流及过电势之间的关系式,计算电解液和镀层中的金属浓度演化,结合自主相变机制,模拟电镀过程中非均匀化生长、固液相变的问题,并得到快充导致的枝晶生长、不规则电极表面镀层形貌演化等电镀过程中的物理化学演化过程,实现对电镀电极演化的模拟预测。本发明计算复现电镀电极演化过程,实现对电镀电极镀层电极演化的捕捉,可辅助工程师设计得到预期的镀层效果。
本发明公开了一种超声波纳米提取找矿的新方法,包括采集土壤样品,选取<160目的土壤样品作为测试样品,将测试样品置于离心管中,并加入超纯水,充分震荡,将离心管放入离心机中离心,去除离心管中的水分,保留土壤,向离心管中保留的土壤重新加入超纯水,在一定条件下进行超声波提取后,再利用离心机在一定转速下离心分离,取上层清液过滤膜,并向滤液中加入5%的稀硝酸,用ICP‑MS测定滤液中的指示元素,即完成超声波纳米提取测量。最后通过数据处理获得相应地球化学异常,指示隐伏矿。本发明对寻找隐伏矿体有较好的指示效果。
本发明公开了一种基于纳秒-皮秒-飞秒激光复合的陶瓷微结构3D打印系统,包括多波长一体化光纤激光器、实时监测系统、滴涂装置、工作台、三维移动平台和控制中心,工作台置于三维移动平台上,多波长一体化光纤激光器、实时监测系统、喷涂装置、三维移动平台均与控制中心信号连接;其中:滴涂装置用来将陶瓷粉胶混合物滴涂至置于工作台上基板的打印区域;多波长一体化光纤激光器用来提供皮秒激光、纳秒激光和飞秒激光;实时监测系统用来实时监测当前陶瓷层的尺寸、表面形貌、晶相结构、化学成分中的一种或多种;三维移动平台用来使工作台进行三维移动。本发明具有低成本、高效率、高精度、可加工复杂微结构的优点,适用于大规模制造陶瓷微结构。
本发明公开了一种微灌实验室多功能强化堵塞实验装置,包括测试平台,混合罐,水泵,三个过滤器,排水槽以及气瓶;各过滤器的进、出口处均设置有压力表和控制阀,气瓶出口处设置有控制阀;测试平台分别通过带控制阀的管道与过滤器、气瓶及有压水管道相连;在混合罐内布置有带孔的环管,混合罐通过二条带控制阀的输水管与水泵相连,水泵还通过输水管和与中水管道相连。本发明装置是一种多功能、自动控制、易扩展、可移动的微灌实验室下多功能强化堵塞试验装置,它既可以测试灌水器水力性能、抗堵塞性能(包括物理、化学和生物堵塞),同时还可测试过滤器对不同堵塞介质的过滤特性,从而实现微灌灌水器和过滤器抗堵塞的快速评价。
本发明提供一种模拟自然条件下流域水环境微塑料老化装置及方法,该装置包括上端开口的环形水槽、盖设于环形水槽上端开口的活动式密闭盖、设于环形水槽的温度控制器、电磁流速仪和变频循环泵、微孔曝气单元、网状金属板、与环形水槽连通的化学氧化投加单元,其中若干网状金属板呈竖直间隔设于环形水槽中,网状金属板上均匀布设有微生物固定化材料,微孔曝气单元设于网状金属板一侧,化学氧化投加单元用于向环形水槽加入加速老化微塑料的化学物质,所述活动式密闭盖内布设有光源。本发明可进行单一因素对微塑料老化的测试,也可以同时引入多种试验因素对微塑料老化的综合模拟测试,操作便捷,可广泛应用于流域水环境微塑料老化模拟研究。
本实用新型公开了一种蓄电池加工用污水处理装置,包括化学处理池,所述化学处理池的内腔设有搅拌机构,所述化学处理池的侧面设有加热机构,所述化学处理池的侧面分别设有温度表和控制开关组,所述温度表的测量端伸入化学处理池的内腔,所述化学处理池上表面的一端设有添加管,该蓄电池加工用污水处理装置通过设置过滤机构二便于对污水中较大的固体颗粒进行初步的物理过滤,通过设置搅拌机构便于将化学药剂和污水进行均匀混合,提高了污水处理的速度,通过设置加热机构和温度表便于控制化学处理池内的温度,便于对污水更好的化学处理,通过设置过滤机构一便于对污水中较小的固体颗粒进行过滤以及去除异味,使用较为便捷。
本发明涉及生物化学传感领域的一种微结构光纤传感器,所述微结构光纤内包含内圈和外圈两圈空气孔,外圈空气孔包括孔内镀膜和孔内非镀膜的两种空气孔,分别用作样品通道。其中,外圈镀膜孔内镀金属膜作为SPR探测通道,用于测量折射率低于背景光纤材料的样品。外圈非镀膜孔样品通道用于探测折射率高于光纤背景材料折射率的样品。内圈与外圈空气孔之间、以及外圈镀膜和非镀膜孔之间呈周期性排布孔阵结构,使表面等离子体共振以及共振耦合两种探测机理能同时在一个结构中实现,有效扩大了传感器的探测范围,使传感器的探测范围不再受到传感器背景材料局限,能满足更广泛的应用需求。本发明还具有体积小,结构简单、容易封装的优点。
本发明是从黄果茄成熟新鲜果实中,通过有机溶 剂粗提取、用硅胶柱层析和HPLC分离得到22-亚氨基-3- [4′-(6″-脱氧-α-L-甘露糖苷)-β-D-葡萄糖苷]- 5-脱氢螺甾烷(简称提取物A)的纯品;经电子轰击质谱(EI- MS)测定A的分子量722,经高能分解质谱(快原子轰击质谱 FAB-MS)测定A的分子式为C39H64O11N,经高分能氢谱核磁共振和碳谱核磁共振[13C-NMR(125MH2)]测定A的甲基和亚甲基型、碳氢结合、碳数及碳级别,又经异核化学位移相关谱和同核位移相关谱(13C-1HCOSY)测定确定了该物的碳结合数,综合上述测定结果,并参考有关文献质谱得到该物的结构式如下;采用浸泡法测定A的对湖北钉螺成螺灭杀活性。
本实用新型公开了喹烯酮反应母液回收装置,涉及喹烯酮反应母液领域,包括反应炉体,所述反应炉体的顶端固定有炉盖,所述炉盖的顶端设置有贯穿至炉盖内部的温度测量器,所述炉盖的顶端位于温度测量器的一侧安装有低速电机。本实用新型通过设置反应炉体低速电机、传动轴和搅拌叶,喹烯酮反应母液使通过几种化学物质相融而产生的反应溶液,通过将集中化学物质放置在一起进行反应、加热,在进行冷却结晶而形成的晶体,通过低速电机带动传动轴进行转动,通过固定在传动轴外侧的搅拌叶对几种化学物质进行搅拌,使几种化学物质的融合的更加均匀,使喹烯酮反应母液的反应速度加快,提高了装置的工作效率。
本发明公开了一种海上核动力平台放射性废液处理系统,该系统包括工艺废液贮存单元、舱底废液贮存单元和化学废液贮存单元;所述工艺废液贮存单元包括依次连接的工艺废液罐、第一过滤器、吸附床、离子交换设备、后置过滤器和第一监测槽;所述舱底废液贮存单元包括依次连接的油脂过滤器、舱底废液罐、第二过滤器、反渗透膜组件和第二监测槽;所述化学废液贮存单元包括依次连接的化学废液罐、第三过滤器、给料箱、蒸发装置、第一冷凝液槽;所述给料箱与反渗透膜组件连接,废液经过反渗透膜组件后的浓缩液进入给料箱中;所述给料箱还连接有化学加药装置;该废液处理系统能够快速、高效地处理海上核动力平台小型压水堆的放射性废液。
一种MoO3与有序介孔碳复合电极材料及其制备方法。利用有序介孔碳提供的双电层电容和层状过渡金属氧化物MoO3提供的赝电容,共同作用,提高电容器的综合电化学性能。该复合材料具有有序介观结构,MoO3纳米粒子尺寸均一,均匀分散于有序介孔碳主体材料中,尺寸小于4nm,有序介孔碳主体材料和MoO3客体材料的质量比例为1∶0.01~0.18。该方法先对主体材料进行表面官能化处理,然后通过液相合成法将前驱液MoO3·0.5H2O2·H2O溶胶填充于介孔碳主体材料的有序孔道内,经过滤、洗涤、热处理,得到MoO3与有序介孔碳复合电极材料。电化学测试表明,复合电极材料的放电比电容提高,稳定性好。本工艺简单,设备要求低,常温下即可实现,可操作性强。可广泛应用于电学器件的电极材料方面。
本发明提出了一种基于电力系统紧急控制的关键因素辨识方法。构建电力系统紧急控制深度强化学习模型,引入配电网节点模型多个历史时刻的特征数据构建配电网特征数据集;进一步将配电网特征数据集中每组配电网特征矩阵集合依次输入至采用随机梯度下降算法和Q学习算法的深度强化学习模型进行训练,预测并得到负荷削减动作;将配电网特征数据集中每组配电网特征矩阵集合依次输入至电力系统紧急控制深度强化学习模型预测得到对应的负荷削减动作,通过Deep‑SHAP方法获取多个影响电力系统紧急控制深度强化学习模型的主要特征;本发明解决机器学习模型中透明度过低的问题,为调度人员提供更加充分的决策帮助,提高模型的可解释性和准确度。
本发明提出了高强韧性铬球铁,最终化学成分按质量百分比为:C为3.4~4.0%,Si为1.7~2.8%,Mn为0.2—0.6%,P<0.07%,S<0.025%,Cr为0.4~0.6%,Ce为0.015~0.04%,Mg为0.03~0.06%,其余是Fe;通过以下步骤获得高强韧性铬球铁材料:(1)铁水熔炼;(2)球化处理;(3)快速测定球化处理后铁水的实际碳当量,以碳当量为4‑4.06%的范围来计算孕育剂的加入量,所述孕育剂为75%硅铁;(4)随流孕育及浇注,冷却后翻砂出件,制得高强韧性铬球铁材料的铸件。本发明选配合理的化学成分,把Cr的加入量提高到0.4~0.6%,球化处理后调整碳当量,以获得高含量的珠光体,通过随流孕育及浇注过程,最终得到高力学性能的铸态球铁,铸态球铁的常规力学性能就能达国家标准牌号QT600‑3~QT900‑2的性能要求。
中冶有色为您提供最新的湖北有色金属化学分析技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!