本发明提出了一种基于电力系统紧急控制的关键因素辨识方法。构建电力系统紧急控制深度强化学习模型,引入配电网节点模型多个历史时刻的特征数据构建配电网特征数据集;进一步将配电网特征数据集中每组配电网特征矩阵集合依次输入至采用随机梯度下降算法和Q学习算法的深度强化学习模型进行训练,预测并得到负荷削减动作;将配电网特征数据集中每组配电网特征矩阵集合依次输入至电力系统紧急控制深度强化学习模型预测得到对应的负荷削减动作,通过Deep‑SHAP方法获取多个影响电力系统紧急控制深度强化学习模型的主要特征;本发明解决机器学习模型中透明度过低的问题,为调度人员提供更加充分的决策帮助,提高模型的可解释性和准确度。
声明:
“基于电力系统紧急控制的混合智能关键因素辨识方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)