采用TiB2颗粒的高强塑性铝基复合材料及其制备方法,它涉及铝基复合材料及其制备方法。它解决了现有铝基复合材料塑性和韧性低,难以实现二次加工的问题。本发明按体积百分比由二硼化钛增强体颗粒为10~25%、铝颗粒为25~35%、其余为基体铝合金制成。本发明的方法为:一、取二硼化钛增强体颗粒、铝颗粒、其余为基体铝合金;二、采用机械式干法混合得到增强体粉末备用;三、将增强体粉末置于模具内压制成块;四、将模具加热;五、将铝合金熔化并浇铸到模具内;六、对浇铸有铝熔液的模具在压力机上施压,保持压力时间并冷却;七、脱模取出铸锭,即制备出本发明的增强铝基复合材料。本发明的铝基复合材料塑性高、耐磨性好和易于二次加工成型。
一种BN纳米片/铝基复合材料的制备方法,涉及一种复合材料的制备方法。本发明的目的是解决现有制备的氮化硼纳米片增强铝基复合材料的力学性能不好的问题,BN纳米片/Al复合材料按照质量分数为0.1%‑10%BN纳米片和90%‑99.9%含铝材料制成。方法:一、称取BN纳米片粉末和含铝材料;二、采用分步球磨法,球磨混粉;三、将混好的粉末取出放入托盘中,置于干燥箱中进行充分干燥;四、将干燥好的混合粉末从干燥箱中取出,放入石墨模具中,随后进行烧结,随炉冷却,即得到BN纳米片/Al复合材料。本发明方法操作简单、工艺流程易控制、致密度高、BN纳米片分散均匀同时力学性能良好。本发明用于铝基复合材料领域。
一种碳@四氧化三铁@铁复合材料的制备方法,它涉及一种铁复合材料的制备方法。本发明的目的是要解决现有处理水污染的材料及技术成本高,易产生二次污染和处理效果差的问题。方法:一、制备葡萄糖溶液;二、制备滴加葡萄糖溶液后的枝状α-Fe吸波材料;三、热处理,得到粉体;四、研磨,得到碳@四氧化三铁@铁复合材料。本发明制备的碳@四氧化三铁@铁复合材料不仅可以降低Fe2+离子的溶出,增加对污染物的吸附,同时又具备可磁性回收的特性,在水处理领域具有良好的应用前景;本发明制备的碳@四氧化三铁@铁复合材料的尺寸为4μm~7μm。本发明可获得一种碳@四氧化三铁@铁复合材料的制备方法。
一种Ti2AlC增强铝基复合材料及其制备方法,涉及一种铝基复合材料及其制备方法。目的是解决复合材料制备时Ti2AlC和铝基体界面反应生成的脆性相导致复合材料塑性的降低问题。复合材料由Ti2AlC增强体和铝基体组成。制备方法:称料并球磨混合,预制体成型,最后进行粉末烧结。本发明制备方法简单、易操作、工艺容易控制,制备出的Ti2AlC增强铝基复合材料具有密度低、致密度高、无界面反应、力学性能良好、机械加工容易等性能特点。本发明适用于制备Ti2AlC增强铝基复合材料。
铝基复合材料超声-电阻焊接方法,它涉及一种铝基复合材料的焊接工艺。本发明的目的是克服铝基复合材料必需在真空环境下焊接的缺点,它是这样实现的:打磨铝基复合材料待焊表面,进行超声波清洗;将焊料置于铝基复合材料待焊表面之间,电阻加热;减小两试件间的液相薄膜厚度;施加超声振动;对试件施加焊接压力,随后让试件自然冷却。电阻加热简便快捷、控制方便,施加的超声波振动可去除待焊表面的氧化膜,提高填充焊料与铝基复合材料的润湿性、改善二者结合性能,同时能均匀化液态焊缝合金中的增强相分布,实现增强相在整个焊缝中的合理分布,以获得无增强相偏聚的理想焊缝,提高接头综合性能,接头钎透率≥85%、接头拉伸强度≥80%、延伸率≥1%。
一种碳纳米管-聚硅烷-有机高分子复合材料及其制备方法,它涉及的是一种复合材料及其制备方法。本发明要解决现有碳纳米管/有机高分子复合材料制备时碳纳米管的分散性差,且现有大多通过改变碳纳米管结构或用常规含碳有机物包覆的方法来提高分散性的问题。本发明方法为:一、碳纳米管纯化;二、制备碱金属有机溶剂悬浮液;三、硅烷单体聚合制备聚硅烷;四、提纯聚硅烷;五、碳纳米管与聚硅烷复合;六、蒸发溶剂;七、采用原位聚合法制备碳纳米管-聚硅烷-有机高分子复合材料。本发明方法在保证碳纳米管结构完好的情况下,加入聚硅烷使其在有机高分子中具有良好的分散性,使其性能大幅提升,且操作简单易行、容易控制,各个过程互不影响。
一种紧凑型复合材料界面剪切强度测试装置及利用其测试复合材料界面剪切强度的方法,它涉及一种复合材料界面剪切强度测试装置及测试复合材料界面剪切强度的方法。本发明的目的是要解决现有唯一能对实际待测复合材料样品进行纯粹界面强度定量测定的微脱粘测试装置因体积过大,难以在低温环境腔内集成,不能用于测量低温环境中复合材料的界面剪切强度的问题。装置包括固定基座、微拉伸测试系统和微滴夹持系统;方法:一、制备界面剪切强度测试试样;二、界面剪切强度测试;三、根据公式计算复合材料界面剪切强度τ。本发明可获得一种紧凑型复合材料界面剪切强度测试装置及利用其测试复合材料界面剪切强度的方法。
一种具有荧光性能的MoS2纳米片增强树脂基复合材料及其制备方法,它涉及MoS2纳米片增强树脂基复合材料及其制备方法。本发明要解决传统复合材料的单一的力学性能的提升与结构承载的作用不能满足对复合材料的多功能应用要求,以及现有方法制备MoS2纳米片增强树脂基复合材料工艺复杂,制备的复合材料荧光性能不好的问题。本发明复合材料是由二维MoS2纳米片和热固性树脂制成。方法:一、将MoS2粉末与分散溶剂混合;二、超声;三、离心;四、与热固性树脂混合;五、超声;六、干燥;七、加入固化剂;八、即得。本发明的复合材料满足对复合材料的多功能应用要求,出现明显的荧光现象,工艺流程简单易行。本发明用于复合材料的制备。
一种3D成型制备SiCf/SiC陶瓷复合材料的方法,它涉及一种陶瓷复合材料SiCf/SiC的制备方法。本发明的目的是要解决传统制备SiCf/SiC陶瓷材料构件时存在着难成型、难加工的问题。方法:一、混合粉末;二、参数设定;三、制备陶瓷坯体;四、固化;五、烧结;六、浸渍、裂解;七:重复步骤六操作,至裂解过程的质量增重小于1%为止,得到SiCf/SiC陶瓷复合材料。有益效果:一、解决了SLS技术制备陶瓷材料孔隙率大、力学性能差等问题;二、工艺简单,工时少,工艺稳定和重现性好。本发明主要用于3D成型制备SiCf/SiC陶瓷复合材料。
三维网络结构SI-AL复合材料及其制备方法,它涉及一种SI-AL复合材料及其制备方法,为了解决现有SI颗粒增强铝基复合材料因存在界面热阻使复合材料的导热性能降低、热膨胀系数高的问题。本发明的三维网络结构SI-AL复合材料的SI增强体的颗粒联结起来形成三维的网络结构。本发明的制备方法首先将复合材料装入模具内;通过压力机的上下压头对模具内施加压力;保持压力,并通过电炉对模具加热;脱模,完成制备。本发明的三维网络结构SI-AL复合材料具有含硅量范围广、低密度、高致密度、低膨胀的特点。本发明的方法使增强体颗粒和基体互相联结成三维网络结构,从而减少增强体与金属基体之间的界面,改善复合材料的导热性能。
玻璃纤维与碳纤维混杂复合材料锥形管及其制备方法,它涉及玻璃纤维与碳纤维混杂复合材料锥形管及其制备方法,它为了解决现有金属、水泥或钢筋混凝土电线杆的结构重量过大和反射电磁波以及单一玻璃纤维复合材料的拉伸模量低,单一碳纤维复合材料价格高的问题,本发明的锥形管为内部通孔为圆柱形的三层复合结构锥形管,内层和外层为玻璃纤维层,中层为碳纤维层,内层采用变长度、变缠绕角的线型缠绕,中层和外层采用全长度、单一缠绕角的线型缠绕,所得玻璃纤维与碳纤维混杂复合材料锥形管的拉伸模量为16.5GPa~17.5GPa,相比单一玻璃纤维复合材料拉伸模量提高32%~40%,且成型工艺简便易操作,用于电线杆、灯杆领域。
一种阻燃抗静电木塑复合材料及其制备方法,涉及一种木塑复合材料及其制备方法。本发明是要解决现有的抗静电木塑复合材料阻燃性能较差,且成本偏高的问题。该木塑复合材料按重量份数由木质纤维材料、热塑性塑料、润滑剂、抗静电剂、阻燃剂、偶联剂和无机填料制成;方法:一、将木质纤维材料、热塑性塑料和润滑剂热混,得热混料;二、将热混料放至冷混机中进行冷混,待温度降至40~60℃时,将称取的抗静电剂、阻燃剂、偶联剂和无机填料加入冷混机中再混合,得到预混料;三、将预混料投入到双螺杆挤出机中进行熔融混合造粒;四、挤出成型或热压成型,即制得阻燃抗静电木塑复合材料。用于室内建筑、装修和装饰材料等领域。
一种用于难粘的聚烯烃基木塑复合材料的协同表面处理的方法,本发明涉及表面处理的方法。本发明要解决现有的难粘聚烯烃基木塑复合材料表面处理方法存在处理条件苛刻、无法实现快速粘接以及处理后的胶接接头耐水性能差的问题。方法:一、打磨;二、偶联剂涂覆;三、等离子体处理。本发明综合了偶联剂涂覆和等离子体处理的优势,改善了两种方法存在的不足,提高了聚烯烃基木塑复合材料的胶接强度和耐水性,实现了难粘聚烯烃基木塑复合材料具有良好胶接耐水性的快速无缝连接。本发明用于难粘的聚烯烃基木塑复合材料的表面处理。
一种三维网络状分布的Ti2AlN颗粒增强TiAl基复合材料及其制备方法,涉及一种Ti2AlN颗粒增强TiAl基复合材料及其制备方法。复合材料由Ti2AlN颗粒增强相和TiAl基体组成,其中Ti2AlN颗粒呈三维网络状分布于TiAl基体中。方法:对钛粉进行渗氮处理得渗氮钛粉,然后将其与铝粉的混合物料进行热压烧结即可。TiAl基体组织被细化,增强相Ti2AlN颗粒呈三维网络状分布在TiAl基体中,将TiAl晶团包围起来,形成一种比单一TiAl合金更为稳定的组织。复合材料具有更高的组织热稳定性,高温条件下长时间稳定服役性能好,高温压缩强度也有所提高,900℃下的压缩强度高达958.9MPa。
溶胶浸润的玻璃粉包覆层的软磁复合材料及其制备方法,涉及软磁材料及其制备方法。本发明解决了现有的无机物包覆层的软磁复合材料中,使软磁复合材料具有优良的力学性能和通过退火的手段使软磁复合材料具有优良的磁性能两者不能并存,无机绝缘层和磁粉的热膨胀系数相差较大的问题。溶胶浸润的玻璃粉包覆层的软磁复合材料是由磁粉、包覆磁粉的二氧化硅层、包覆在二氧化硅层外的玻璃粉层和玻璃溶胶浸渗层组成。制备方法:一、磁粉的预处理;二、包覆二氧化硅层;三、制备玻璃粉;四、包覆玻璃粉层;五、制备坯料;六、用玻璃溶胶对坯料进行浸渗;七、坯料退火。本发明应用于开关磁阻、谐振电感、防抱死制动传感器、电磁驱动装置和低频滤波器领域。
一种层状交替结构的石墨烯导热膜/导热硅胶膜复合材料及其制备方法,它涉及一种石墨烯/导热硅胶复合材料及其制备方法。本发明是要解决现有的石墨烯/导热硅胶复合材料中的石墨烯分散困难,难以形成稳定连续的导热通路的技术问题。本发明的复合材料是由石墨烯导热膜和导热硅胶膜组成,石墨烯导热膜和导热硅胶膜交替排列。本发明的制备方法:一、制备石墨烯导热膜;二、制备导热硅胶;三、制备层状交替结构的石墨烯导热膜/导热硅胶膜复合材料。本发明采用纳米纤维素与石墨烯复合的方法制备石墨烯导热膜,利用界面技术复合导热硅胶膜形成层状交替结构的石墨烯/导热硅胶膜复合材料,满足航空、航天、电子电气等领域对高性能导热材料的需求。
一种以纳米硅溶胶为烧结助剂热压制备的氮化硼基透波复合材料及其制备方法,本发明涉及氮化硼基透波复合材料及其制备方法。本发明要解决现有氮化硼透波陶瓷复合材料的度低、韧性差的不足的技术问题。氮化硼基透波复合材料按体积百分比非晶态纳米SiO2为10%~40%和六方氮化硼粉末为60%~90%制成;方法:一、混合,球磨,制得浆料;二、研碎、过筛,得到混料;三、烧结,冷却。本发明获得的氮化硼基透波复合材料的力学性能,热学性能和介电性能均达到天线窗材料的要求。本发明具有制备过程简单、工艺可控、能够制造大尺寸天线窗陶瓷材料,适于批量生产的优点。本发明用于制备氮化硼基透波复合材料。
一种新型陶瓷基复合材料低温表面渗碳辅助钎焊方法,本发明涉及材料焊接领域。本发明要解决现有陶瓷基复合材料表面钎料难润湿性而导致钎焊接头力学性能差的问题。方法:去除陶瓷基复合材料表面杂质,然后将陶瓷基复合材料置于等离子体增强化学气相沉积真空装置中,通入氩气,调节温度及压强,再通入甲烷气体进行沉积,沉积结束后,得到表面形成渗碳层的陶瓷基复合材料,将钛基钎料置于表面形成渗碳层的陶瓷基复合材料和金属材料的待焊接面之间,并放置于真空钎焊炉中,抽真空并在高温下保温,冷却,即完成新型陶瓷基复合材料低温表面渗碳辅助钎焊过程。本发明用于一种新型陶瓷基复合材料低温表面渗碳辅助钎焊方法。
一种MoS2/ZnIn2S4纳米片复合材料的制备方法,本发明涉及复合材料的制备方法。本发明要解决现有单一ZnIn2S4光催化剂光催化活性较低的问题。方法:一、将片层MoS2与无水乙醇混合;二、加入到铟盐、硫源、锌盐、多元醇和无水乙醇的混合溶液中;三、反应,洗涤,干燥。本发明实现了MoS2/ZnIn2S4纳米片复合材料的可控制备;制备的MoS2/ZnIn2S4纳米片复合材料具有很好的稳定性。本发明用于制备MoS2/ZnIn2S4纳米片复合材料。
共振反共振电磁复合材料及其制备方法,它涉及电磁复合材料及其制备方法。它解决了现有对于无序复合结构的电磁复合材料应用少,因为微小周期性复合结构制备的难度较大,而有序周期性结构限制了左手器件的设计和制作的问题。本发明的共振反共振电磁复合材料按体积百分比导电散射体材料为10~40%、基体材料为60~90%制成。制备方法为:一、取散射体材料和基体材料放入螺杆混料机中进行固态混合;二、将步骤一混合均匀的材料模压或挤压成形,即制备出共振和反共振电磁复合材料。本发明电磁复合材料适用于微波吸收和制备具有左手效应相关特性的新型电磁器件的设计和制作。具有成型性能好、微波透明度好、电磁性能稳定的特点。
玻璃绝缘层的软磁复合材料及其制备方法,它涉及软磁复合材料及其制备方法。本发明要解决现有的软磁复合材料无法进行高温退火以去除制备过程产生的残余应力,进而无法提高软磁复合材料磁性能,还有无法在温差较大的环境或是在长时间使用过程中因材料发热时而始终保持磁性能稳定的技术问题;本发明中玻璃绝缘层的软磁复合材料是在磁粉上沉积非晶态物质,然后冷压或热压处理之后经退火处理制成的。本发明中软磁复合材料的初始磁导率可以达到200以上,最大磁导率可达900以上,饱和磁感应强度可达1.5T,矫顽力小于250A/m,在50Hz、1T的交流磁场下的铁损可以小于3W/Kg。
一种碳包覆Fe3O4@Fe枝状复合材料的制备方法,它涉及一种制备Fe3O4@Fe枝状复合材料的方法。本发明的目的是要解决现有固体催化剂存在多次循环性能严重下降,造成二次污染和对水体中污染物的降解效率低的问题。方法:一、配制葡萄糖溶液;二、制备枝状α-Fe吸波材料均匀分散的葡萄糖悬浮液;三、水热反应,得到碳包覆Fe3O4@Fe枝状复合材料。本发明制备的碳包覆Fe3O4@Fe枝状复合材料的比表面积大、活性高、且价廉易得,在水处理领域具有重要的应用价值;本发明制备的碳包覆Fe3O4@Fe枝状复合材料的比表面积为25~93m2·g-1。本发明可获得一种碳包覆Fe3O4@Fe枝状复合材料的制备方法。
纳米碳化硅颗粒增强铝基复合材料及制备方法,它涉及一种碳化硅增强铝基复合材料及制备方法。它解决了传统制备颗粒增强铝基复合材料的方法中纳米级增强颗粒不能均匀分布于铝基体内,制备工艺繁杂,成本高的问题。纳米碳化硅颗粒增强铝基复合材料由纳米碳化硅颗粒和铝粉作为原料制成;其中纳米碳化硅颗粒的体积占原料体积的0.5~20%,铝粉的体积占原料体积的80~99.5%。其制备方法:1.将原料混合投入密封球磨罐后抽真空再充入氩气反复进行2~10次;2.高能球磨;3.热压烧结;4.热挤压,即得到纳米碳化硅颗粒增强铝基复合材料。本发明制备工艺简单,成本低,纳米碳化硅颗粒在铝基体内分布均匀,制粉率高,而且,复合材料的力学性能有显著提高。
一种共挤制备高界面结合强度木塑复合材料的模具和方法,它涉及一种共挤制备木塑复合材料的模具和方法,它是为解决现有的木塑复合材料界面结合强度低的技术问题,用本发明的模具共挤制备高界面结合强度木塑复合材料的方法如下:先调节模具温控装置、冷却装置及挤出机螺杆,控制压力和温度,然后使芯层和表层物料依次通过模具,共挤得到高界面结合强度木塑复合材料,其界面结合强度为3.0MPa~3.5MPa,比现有的木塑复合材料提高了0.7~6倍,还可通过改变表层物料流道内压力调节表层厚度,包覆的表面还可根据不同模具的设计灵活改动,模具设计简单,易于加工,可用于木塑复合材料加工领域。
一种连续Mo纤维增强TiAl基复合材料及其制备方法,它涉及一种复合材料及其制备方法。本发明是要解决现有TiAl合金的室温脆性和高温下强度不足以及现有的连续纤维增强TiAl基复合材料的制备方法复杂、效率低、成本高的问题。本发明的连续Mo纤维增强TiAl基复合材料由连续Mo纤维增强体和TiAl基体组成。制备方法:首先,配制粉末浆料;然后,采用粉末浆料铸造法制备预制体并对其切割;最后,进行真空热压烧结,得到连续Mo纤维增强TiAl基复合材料。本发明制备的复合材料室温韧性好且高温下强度高,制备方法简单、效率高、成本低。本发明适用于连续纤维增强TiAl基复合材料的生产。
一种二硫化钼/铝复合材料及其制备方法,它涉及铝基复合材料技术领域,具体涉及一种铝基复合材料及其制备方法。本发明是要解决现有二硫化钼/铝复合材料制备方法仅适用于低体积分数复合材料的制备,制备的材料性能较差的问题。1、按体积配比称取二硫化钼和含铝材料;2、将二硫化钼和含铝材料放入球磨罐中,利用机械球磨制成混合粉体;3、将混合粉体倒入石墨模具中,在压力机上预压成型,得到预制体;4、将预制体进行放电等离子烧结;5、降温冷却至室温后脱模即得二硫化钼/铝复合材料。本发明二硫化钼/铝复合材料具有低摩擦系数以及良好的强度和弹性模量,二硫化钼颗粒分布均匀无团聚、大小和含量可任意调控,致密度高、性能好。
一种基于双稳态复合材料可展开柱壳的负泊松比蜂窝结构,由若干个蜂窝胞元结构交错排列组成,所述蜂窝胞元结构为由双稳态柱壳杆和连接圆管构成的双稳态复合材料柱壳蜂窝胞元结构,4根双稳态复合材料柱壳杆的一端连接到与双稳态复合材料柱壳杆卷曲稳定曲率半径一致的连接圆管上,另一端与另一组胞元的连接圆管连接,形成一种具有负泊松比特性的蜂窝结构。与采用平板支撑的蜂窝胞元结构不同,本发明采用具有双稳态特性的复合材料柱壳杆可提高所成型蜂窝结构的展开支撑刚度,且压缩时,自动卷曲收缩,避免了采用平板结构时出现的较大范围屈曲现象,可大幅提高该类结构的负泊松比效应和结构刚度,并提升结构的可靠性。
一种多孔Si3N4/SiC复相陶瓷增强金属基复合材料的制备方法,涉及一种陶瓷增强金属基复合材料的制备方法。本发明为了解决目前的陶瓷增强金属基复合材料热膨胀系数高以及增强体易发生团聚且较难分散均匀的技术问题。本发明:一、制备浆料;二、制备多孔Si3N4/SiC复相陶瓷;三、多孔复相陶瓷的表面改性;四、制备复合材料。本发明的多孔复相陶瓷的孔径较小,限制了复合材料中金属晶粒的长大,“细晶强化”有效提高了复合材料的综合力学性能;本发明的多孔复相陶瓷中Si3N4纳米线均匀分布;本发明的金属基复合材料中陶瓷增强体呈连续分布,使金属基复合材料有低的热膨胀系数,较高的金属含量使复合材料具有较高的热导率。
一种双酚A型环氧树脂/凹凸棒土纳米复合材料及其制备方法,它涉及一种改性环氧树脂复合材料及其制备方法。本发明的目的是要解决现有采用蒙脱土增强环氧树脂的气体阻隔性存在制备工艺繁杂,且制备成本高的问题。一种双酚A型环氧树脂/凹凸棒土纳米复合材料由双酚A型环氧树脂、表面接枝改性处理后凹凸棒土、溶剂和固化剂制备而成。方法:一、制备超声处理后的凹凸棒土分散液;二、制备表面接枝改性处理后凹凸棒土;三、利用双酚A型环氧树脂、表面接枝改性处理后凹凸棒土、溶剂和固化剂进行成型处理制备双酚A型环氧树脂/凹凸棒土纳米复合材料。本发明主要用于制备双酚A型环氧树脂/凹凸棒土纳米复合材料。
聚硅烷?二硫化钼夹层复合材料的制备方法,它涉及一种二硫化钼夹层复合材料的制备方法。本发明的目的要解决提高聚硅烷?二硫化钼复合材料相容性差的问题。方法:一、可溶性聚硅烷的制备;二、聚硅烷?四氢呋喃溶液的制备;三、烷基锂?二硫化钼夹层物的制备;四、单层二硫化钼分散液的制备;五、夹层反应,即得到聚硅烷?二硫化钼夹层复合材料。优点:具备两者优异性能的同时,非常好地解决了聚硅烷?二硫化钼复合材料制备过程中的分散性和相容性难题,且制备方法简单,在导电材料、耐磨材料等方面有着潜在的应用价值。本发明主要用制备聚硅烷?二硫化钼夹层复合材料。
中冶有色为您提供最新的黑龙江有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!