本发明涉及信息技术领域,特别涉及一种防止数据信息丢失的DGRU神经网络及其预测方法。本发明中的DGRU神经网络由输入层、输出层和隐含层组成,隐含层由DGRU神经元构成;所述的DGRU神经元由同一时刻的两个标准GRU单元连接构成;本发明方法包括:获取历史数据集并进行预处理;利用预处理后的数据集训练DGRU神经网络,建立预测模型;获取当前失效数据,进行数据归一化处理后输入预测模型中,得到预测结果三个部分。本发明克服了传统GRU神经网络的缺点,对GRU神经网络进行改进,提出一种能增强模型记忆力,防止信息丢失的DGRU神经网络,并应用DGRU神经网路建立预测模型,与传统GRU神经网络相比,可以提高模型的预测精度。
声明:
“防止数据信息丢失的DGRU神经网络及其预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)