本发明公开了一种用于风电机组零部件的需求预测方法,该需求预测方法采用BP神经网络预测模型,BP神经网络预测模型对某一种风电机组零部件设备的预期失效并替换的数量进行预测,BP神经网络预测模型通过给定的输入量和输出量训练出能够表达它们之间内在关系的网络,得到一个能够反映出各种影响因素与设备故障之间数量关系的函数,并运用现有的数据预测结果,达到准确预测需求的目标。本发明中的需求预测方法是以专家经验得到需求数量的决策提供理论依据,将零部件需求预测的不确定性和经验判断通过数学模型转化为具有指导意义的可重复的系统库存管理方法,帮助风电企业更好地管理仓库,降低库存占用资金,从而达到减少成本的目的。
声明:
“用于风电机组零部件的需求预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)