本发明涉及一种融合多任务学习的飞机发动机失效状态预测方法,包括:预先基于健康指数模型和失效模型构建多任务学习模型,通过获取传感器失效信号数据对该多任务学习模型进行参数估计,获取待预测传感器数据,并载入参数估计后的多任务学习模型,获取失效状态预测结果,相应地预测正在使用中发动机的剩余使用寿命;失效模型采用二次多项式失效模型描述失效状态,健康指数模型通过设置权重系数将各个传感器信号线性叠加描述健康状态;根据健康状态和失效状态之间的关系,将健康模型和失效模型融合构成多任务学习模型。与现有技术相比,本发明充分考虑在同一运行状态和环境下各飞机发动机之间的相似性,使得参数估计准确性更高。
声明:
“融合多任务学习的飞机发动机失效状态预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)