本发明公开一种图像编解码神经网络分层定点化方法。该方法的步骤如下:(1)选取合适的静态图像训练集及测试集建立并训练端到端的图像编解码网络;(2)对所述图像编解码网络的参数和激活值进行定点化,其中,对于网络不同层的参数和激活值采用不同的定点化比特数,并对需要进行浮点运算的激活函数进行简化;(3)重新训练经步骤(2)定点化后的图像编解码网络;(4)将训练后的图像编解码网络的输出数据,经过量化和无损熵编码输出作为压缩数据。本发明的方法通过对不同的网络层采用不同的量化系数,优化了定点化效果。
声明:
“图像编解码神经网络分层定点化方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)