本发明公开了一种基于深度神经网络的视频压缩方法,步骤如下:收集并整理视频图像数据集,构建神经网络训练集、测试集和交叉验证集;建立多层的深度神经网络;对于帧间预测,利用运动估计算法寻找最佳匹配块,并计算残差和帧间预测的均方差;预测完成后将残差作为新的训练数据训练残差编码网络,残差网络模型包括帧内残差和帧间残差;预测和残差神经网络的输出数据经过量化和无损熵编码一起作为固定长度码流的压缩数据;解码端通过与编码端对称的神经网络将压缩数据还原,并重建恢复出压缩后图像。本发明的视频压缩方法,与传统H.264视频编码方法在大量测试视频序列上的同等比较中,可以在相同质量上平均节省26%左右的码率。
声明:
“基于深度神经网络的视频压缩方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)