为解决现有非接触无损工件缺陷检测识别准确率低、检测效果较差、已被图像非缺陷位置信息所掩盖的技术问题,本发明提供了一种视觉注意力网络及工件表面缺陷检测方法,在卷积神经网络模型作为工件分类网络的基础上,加入视觉注意力模块,通过视觉注意力模块生成的软注意力模板提取特征图中的重要特征,进而提升了CNN模型对具有表面缺陷的工件的识别准确率。
声明:
“视觉注意力网络及工件表面缺陷检测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)