本发明公开了一种基于多目标学习的人脸识别算法训练方法,包括以下步骤:随机初始化神经网络参数,使用基于人脸身份的损失函数以及基于人脸特征点位置约束的损失函数,以最小化学习目标对深度卷积网络进行训练;当对人脸身份的预测准确率达到阈值后,计算基于人脸特征类内距离的损失函数和基于人脸特征类间距离的损失函数,并对每一个样本使用基于人脸身份的损失函数及人脸特征点位置约束的损失函数计算;基于人工设置权重,对各损失函数进行加权,得到总的损失函数,并基于总的损失函数实现反向传播,实现对网络参数的更新,当准确率稳定后,停止网络训练,得到训练好的人脸识别模型。
声明:
“基于多目标学习的人脸识别算法训练方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)