本发明涉及一种基于Dueling DQN的虚实融合一二级分离模型参数优化方法,属于航天器设计参数优化技术领域。本发明使用BP神经网络训练的代理模型替代火箭一二级分离系统物理仿真模型,可以快速地生成数据、完成预测。使用Dueling DQN深度强化学习对火箭一二级分离系统结构参数进行优化,将Q值函数分解为价值函数和优势函数,考虑状态单独的影响,使网络更易收敛。相比传统启发式算法,深度强化学习搜索更细致,迭代次数更多,优化结果更优,深度网络可以积累智能体在可行解空间里的搜索经验,对于结构相同的问题大大提升了其拓展性和泛化能力,对于新的数据可以在已经训练过的基础上在进行训练,减少再次开发的成本和时间,通过历史经验减少训练消耗的时间。
声明:
“基于Dueling DQN的虚实融合一二级分离模型参数优化方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)