本发明公开了一种自适应天牛须优化神经网络的
锂电池等效电路模型参数辨识方法。它包括以下步骤:(1)建立锂离子电池的二阶PNGV等效电路模型;(2)利用电池混合脉冲功率特性测试方法对锂电池进行充放电试验,得到响应曲线,并计算不同荷电状态下等效电路模型的参数,包括开路电压、电池内阻、
电化学极化电阻、电化学极化电容、浓度差极化电阻、浓度差极化电容;(3)对等效电路模型参数数据进行归一化处理,得到神经网络训练所需要的输入输出数据集;(4)构建锂离子电池的神经网络辨识系统;(5)确定自适应天牛须算法的适应度函数,并利用自适应天牛须算法获取网络的最优初始权值和阈值;(6)对天牛须优化的神经网络辨识系统进行训练,建立锂离子电池参数辨识器,用于辨识锂离子电池的等效电路模型参数,进而计算锂离子电池的端电压。本发明考虑了锂离子电池的非线性特征,利用自适应天牛须优化的神经网络,能够有效地对锂电池等效电路模型参数进行辨识,可以缩短神经网络训练所需的迭代次数,并且提高了锂离子电池等效电路模型的精度。
声明:
“自适应天牛须优化神经网络的锂电池等效电路模型参数辨识方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)