本发明提出了一种深度强化图像聚类方法,属于图像聚类与数据挖掘技术领域,1)预训练编解码网络,初始化潜在特征空间;2)采用传统K‑means方法在潜在特征空间对聚类质心初始化,并为各质心分配伯努利‑逻辑斯蒂单元;3)计算该点与单元间的逻辑回归参数和伯努利分布;4)利用奖励回归策略动态分配临时奖赏,联合辅助目标分布计算各质心运动轨迹;5)计算权重,迭代优化聚类单元直至满足收敛条件,完成深度强化图像聚类过程。本发明同时基于强化学习思想以奖励回归策略联合利用潜在特征表示和调整聚类质心,充分将全部聚类信息尤其是临近区域聚类信息作用于聚类分析的过程中,在环境与行为的交互中有效的改善聚类模糊的问题,有效提升聚类性能。
声明:
“深度强化图像聚类方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)