本发明涉及一种小水电群出力预测方法和系统。所述预测方法中,对初始样本进行预处理,一定程度上避免了坏数据对预测准确度的干扰,并使模型更容易收敛至最优解;利用深度卷积生成对抗网络生成小水电出力数据以补充原始样本数据,有效改善因中雨、大雨等样本数据缺乏而导致预测准确率下降的问题;将样本数据归一化还原后,根据轻梯度提升机的特点合理重构样本数据集,便于训练预测模型,提高轻梯度提升机的预测准确度;采用轻梯度提升机模型输出预测数据,与传统神经网络预测方法相比,该模型拥有支持并行化学习、内存占用率低、训练过程可视化、训练效率高、准确率高等优点,且可处理海量数据,能更快更好的运用于工业实践。
声明:
“小水电群出力预测方法和系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)